Naphthyl radical: Negative ion photoelectron spectroscopy, Franck-Condon simulation, and thermochemistry

被引:125
作者
Ervin, KM [1 ]
Ramond, TM
Davico, GE
Schwartz, RL
Casey, SM
Lineberger, WC
机构
[1] Univ Nevada, Dept Chem, Reno, NV 89557 USA
[2] Univ Nevada, Chem Phys Program, Reno, NV 89557 USA
[3] Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA
[4] Univ Colorado, Natl Inst Stand & Technol, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1021/jp011779h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The naphthyl anion (C10H7-, naphthalenide) is prepared in a flow tube reactor by proton transfer between NH2- and naphthalene (C10H8). The photoelectron spectrum of this anion is measured at a fixed laser wavelength of 364 nm. A single electronic band is observed, corresponding to the neutral naphthyl radical (C10H7, naphthalenyl). The Franck-Condon profiles for both 1-naphthyl (alpha -naphthyl) and 2-naphthyl (beta -naphthyl) are simulated on the basis of density functional theory calculations of the vibrational frequencies and normal coordinates. Issues involving Franck-Condon simulations for large polyatomic molecules and Duschinsky rotation are discussed. and improved Franck-Condon simulation algorithms are presented. Comparison of the Franck-Condon simulations with the photoelectron spectrum shows that the observed band is predominantly due to the 1-naphthyl isomer, consistent with previous measurements showing the 1-naphthyl anion as more stable than the 2-naphthyl anion. The observed electron affinity of the 1-naphthyl radical is EA(0)(1-C10H7) = 1.403 +/- 0.015 eV. On the basis of an evaluation of literature data. the recommended gas-phase acidity of naphthalene is Delta H-acid(298)(1-C10H7-H) = 1649 +/- 14 kJ/mol and the recommended bond dissociation energy of naphthalene is DH298(1-C10H7-H) = 472 +/- 14 kJ/mol.
引用
收藏
页码:10822 / 10831
页数:10
相关论文
共 75 条
[11]  
Chase M.W., 1998, Monograph, V9
[12]   Franck-Condon analysis of photoelectron and electronic spectra of small molecules [J].
Chau, FT ;
Dyke, JM ;
Lee, EP ;
Wang, DC .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1998, 97 (1-2) :33-47
[13]  
CHEN P, 1993, FCF CDECK FORTRAN PR
[14]  
Chen P., 1994, UNIMOLECULAR BIMOLEC, P371
[15]   Energetics and site specificity of the homolytic C-H bond cleavage in benzenoid hydrocarbons: An ab initio electronic structure study [J].
Cioslowski, J ;
Liu, GH ;
Martinov, M ;
Piskorz, P ;
Moncrieff, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (22) :5261-5264
[16]   Simulated infrared emission spectra of highly excited polyatomic molecules: A detailed model of the PAH-UIR hypothesis [J].
Cook, DJ ;
Saykally, RJ .
ASTROPHYSICAL JOURNAL, 1998, 493 (02) :793-802
[17]  
Cooks RG, 1999, J MASS SPECTROM, V34, P85, DOI 10.1002/(SICI)1096-9888(199902)34:2<85::AID-JMS795>3.0.CO
[18]  
2-#
[19]   Hartree-Fock orbital instability envelopes in highly correlated single-reference wave functions [J].
Crawford, TD ;
Stanton, JF ;
Allen, WD ;
Schaefer, HF .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (24) :10626-10632
[20]   THE C-H BOND-ENERGY OF BENZENE [J].
DAVICO, GE ;
BIERBAUM, VM ;
DEPUY, CH ;
ELLISON, GB ;
SQUIRES, RR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (09) :2590-2599