Ultrasensitive magnetic field detection using a single artificial atom

被引:65
作者
Bal, M. [1 ,2 ]
Deng, C. [1 ,2 ]
Orgiazzi, J. -L. [2 ,3 ]
Ong, F. R. [1 ,2 ]
Lupascu, A. [1 ,2 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
CIRCUIT QUANTUM ELECTRODYNAMICS; FLUX QUBIT; DC-SQUID; NOISE; MAGNETOMETRY; DIAMOND; AMPLIFICATION; SPIN;
D O I
10.1038/ncomms2332
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient detection of magnetic fields is central to many areas of research and technology. High-sensitivity detectors are commonly built using direct-current superconducting quantum interference devices or atomic systems. Here we use a single artificial atom to implement an ultrasensitive magnetometer with micron range size. The artificial atom, a superconducting two-level system, is operated similarly to atom and diamond nitrogen-vacancy centre-based magnetometers. The high sensitivity results from quantum coherence combined with strong coupling to magnetic field. We obtain a sensitivity of 3.3 pT Hz(-1/2) for a frequency of 10 MHz. We discuss feasible improvements to increase sensitivity by one order of magnitude. The intrinsic sensitivity of this detector at frequencies in the 100 kHz-10MHz range compares favourably with direct-current superconducting quantum interference devices and atomic magnetometers of equivalent spatial resolution. This result illustrates the potential of artificial quantum systems for sensitive detection and related applications.
引用
收藏
页数:8
相关论文
共 41 条
[11]  
Clarke J., 2004, SQUID HDB, V1
[12]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[13]   Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer [J].
Dang, H. B. ;
Maloof, A. C. ;
Romalis, M. V. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[14]   QUANTUM NOISE IN SQUIDS [J].
DANILOV, VV ;
LIKHAREV, KK ;
ZORIN, AB .
IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (03) :572-575
[15]   Single-Spin Magnetometry with Multipulse Sensing Sequences [J].
de lange, G. ;
Riste, D. ;
Dobrovitski, V. V. ;
Hanson, R. .
PHYSICAL REVIEW LETTERS, 2011, 106 (08)
[16]   Scanning magnetic field microscope with a diamond single-spin sensor [J].
Degen, C. L. .
APPLIED PHYSICS LETTERS, 2008, 92 (24)
[17]   Cavity Optomechanical Magnetometer [J].
Forstner, S. ;
Prams, S. ;
Knittel, J. ;
van Ooijen, E. D. ;
Swaim, J. D. ;
Harris, G. I. ;
Szorkovszky, A. ;
Bowen, W. P. ;
Rubinsztein-Dunlop, H. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[18]   RICE REPRESENTATION FOR CYCLOSTATIONARY PROCESSES [J].
GARDNER, WA .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1987, 35 (01) :74-78
[19]   Cyclostationarity: Half a century of research [J].
Gardner, WA ;
Napolitano, A ;
Paura, L .
SIGNAL PROCESSING, 2006, 86 (04) :639-697
[20]   Flux qubit as a sensor of magnetic flux [J].
Il'ichev, E. ;
Greenberg, Ya. S. .
EPL, 2007, 77 (05)