Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues

被引:78
作者
Araujo, J. V. [1 ,2 ]
Martins, A. [1 ,2 ]
Leonor, I. B. [1 ,2 ]
Pinho, E. D. [1 ,2 ]
Reis, R. L. [1 ,2 ]
Neves, N. M. [1 ,2 ]
机构
[1] Univ Minho, Res Grp Biomat Biodegradables & Biomimet 3Bs, Dept Polymer Engn, P-4710057 Braga, Portugal
[2] PT Govt Associated Lab, Inst Biotechnol & Bioengn, Braga, Portugal
关键词
Biomimetic calcium phosphate; polycaprolactone; electrospinning; nanofibers; osteoblastlike cells; surface modification; biomimetic coating;
D O I
10.1163/156856208786052335
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The aim of this work was to develop novel electrospun nanofiber meshes coated with a biomimetic calcium phosphate (BCP) layer that mimics the extracellular microenvironment found in the human bone structure. Poly(epsilon-caprolactone) (PCL) was selected because of its well-known medical applications, its biodegradability, biocompatibility and its susceptibility to partial hydrolysis by a straightforward alkaline treatment. The deposition of a calcium phosphate layer, similar to the inorganic phase of bone, on PCL nanofiber meshes was achieved by means of a surface modification. This initial surface modification was followed by treatment with solutions containing calcium and phosphate ions. The process was finished by a posterior immersion in a simulated body fluid (SBF) with nearly 1.5 x the inorganic concentration of the human blood plasma ions. After some optimization work, the best conditions were chosen to perform the biological assays. The influence of the bone-like BCP layer on the viability and adhesion, as well as on the proliferation of human osteoblast-like cells, was assessed. It was shown that PCL nanofiber meshes coated with a BCP layer support and enhance the proliferation of osteoblasts for long culture periods. The attractive properties of the coated structures produced in the present work demonstrated that those materials have potential to be used for applications in bone tissue engineering. This is the first time that nanofiber meshes could be coated with a biomimetic bone-like calcium phosphate layer produced in a way that the original mesh architecture can be fully maintained.
引用
收藏
页码:1261 / 1278
页数:18
相关论文
共 60 条
[1]   APATITE COATING ON CERAMICS, METALS AND POLYMERS UTILIZING A BIOLOGICAL PROCESS [J].
ABE, Y ;
KOKUBO, T ;
YAMAMURO, T .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 1990, 1 (04) :233-238
[2]   Matrix regulation of skeletal cell apoptosis - Role of calcium and phosphate ions [J].
Adams, CS ;
Mansfield, K ;
Perlot, RL ;
Shapiro, IM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20316-20322
[3]   Laser deposited calcium phosphate films, as sublayers for biomimetics growth of biocompatible coatings [J].
Antonov, EN ;
Bagratashvili, VN ;
Krotova, LI ;
Popov, VK .
BIOCERAMICS, 2000, 192-1 :63-66
[4]   Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration:: in vitro characterization and human osteoblast response [J].
Causa, F ;
Netti, PA ;
Ambrosio, L ;
Ciapetti, G ;
Baldini, N ;
Pagani, S ;
Martini, D ;
Giunti, A .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 76A (01) :151-162
[5]   Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds [J].
Chen, Jinglu ;
Chu, Benjamin ;
Hsiao, Benjamin S. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 79A (02) :307-317
[6]   Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites [J].
Choi, DW ;
Marra, KG ;
Kumta, PN .
MATERIALS RESEARCH BULLETIN, 2004, 39 (03) :417-432
[7]   Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro [J].
Chou, L ;
Marek, B ;
Wagner, WR .
BIOMATERIALS, 1999, 20 (10) :977-985
[8]   The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression [J].
Chou, YF ;
Huang, WB ;
Dunn, JCY ;
Miller, TA ;
Wu, BM .
BIOMATERIALS, 2005, 26 (03) :285-295
[9]   Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair:: a preliminary study [J].
Ciapetti, G ;
Ambrosio, L ;
Savarino, L ;
Granchi, D ;
Cenni, E ;
Baldini, N ;
Pagani, S ;
Guizzardi, S ;
Causa, F ;
Giunti, A .
BIOMATERIALS, 2003, 24 (21) :3815-3824
[10]   Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery [J].
Coombes, AGA ;
Rizzi, SC ;
Williamson, M ;
Barralet, JE ;
Downes, S ;
Wallace, WA .
BIOMATERIALS, 2004, 25 (02) :315-325