Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery

被引:818
作者
Sakuda, Atsushi [1 ]
Hayashi, Akitoshi [1 ]
Tatsumisago, Masahiro [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Naka Ku, Sakai, Osaka 5998531, Japan
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
日本学术振兴会;
关键词
LI2S-P2S5; GLASS;
D O I
10.1038/srep02261
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
All-solid-state secondary batteries that employ inorganic solid electrolytes are desirable because they are potentially safer than conventional batteries. The ionic conductivities of solid electrolytes are currently attracting great attention. In addition to the conductivity, the mechanical properties of solid electrolytes are important for improving the energy density and cycle performance. However, the mechanical properties of sulfide electrolytes have not been clarified in detail. Here, we demonstrate the unique mechanical properties of sulfide electrolytes. Sulfide electrolytes show room temperature pressure sintering. Ionic materials with low bond energies and a highly covalent character, which is promising for achieving a high ionic conductivity, tend to be suitable for room-temperature processing. The Young's moduli of sulfide electrolytes were measured to be about 20 GPa, which is an intermediate value between those of typical oxides and organic polymers.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Hayashi A, 2001, J AM CERAM SOC, V84, P477, DOI 10.1111/j.1151-2916.2001.tb00685.x
[3]   Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries [J].
Hayashi, Akitoshi ;
Noi, Kousuke ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro .
NATURE COMMUNICATIONS, 2012, 3
[4]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[5]   Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes [J].
Kitaura, Hirokazu ;
Hayashi, Akitoshi ;
Ohtomo, Takamasa ;
Hama, Shigenori ;
Tatsumisago, Masahiro .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (01) :118-124
[6]  
Makishima A., 1973, Journal of Non-Crystalline Solids, V12, P35, DOI 10.1016/0022-3093(73)90053-7
[8]   Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries [J].
Minami, Tsutomu ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
SOLID STATE IONICS, 2006, 177 (26-32) :2715-2720
[9]   New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses [J].
Mizuno, F ;
Hayashi, A ;
Tadanaga, K ;
Tatsumisago, M .
ADVANCED MATERIALS, 2005, 17 (07) :918-+
[10]   Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J].
Murugan, Ramaswamy ;
Thangadurai, Venkataraman ;
Weppner, Werner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) :7778-7781