Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf"

被引:91
作者
Trevisan, Roberto [1 ]
Rodenas, Pau [1 ]
Gonzalez-Pedro, Victoria [1 ]
Sima, Cornelia [1 ,2 ,3 ]
Sanchez, Rafael S. [1 ]
Barea, Eva M. [1 ]
Mora-Sero, Ivan [1 ]
Fabregat-Santiago, Francisco [1 ]
Gimenez, Sixto [1 ]
机构
[1] Univ Jaume 1, Photovolta & Optoelect Devices Grp, Dept Fis, Castellon de La Plana 12071, Spain
[2] Natl Inst Lasers Plasma & Radiat Phys, Bucharest 077125, Romania
[3] Univ Bucharest, Fac Phys, Bucharest 077125, Romania
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2013年 / 4卷 / 01期
关键词
CHEMICAL CAPACITANCE; TIO2; NANOSTRUCTURES; WATER; ARRAYS; SEMICONDUCTORS; EFFICIENCY;
D O I
10.1021/jz301890m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA.cm(-2), leading to 60 mL.cm(-2).day(-1) hydrogen generation. Most importantly, confirmation of the contribution of infrared photons to H-2 generation was provided by the incident-photon-to-current-efficiency (IPCE), and the integrated current was in excellent agreement with that obtained through cyclic voltammetry. The main electronic processes (accumulation, transport, and recombination) were identified by impedance spectroscopy, which appears as a simple and reliable methodology to evaluate the limiting factors of these photoelectrodes. On the basis of this TiO2/PbS/CdS heterostructrure, a "quasi-artificial leaf' has been developed, which has proven to produce hydrogen under simulated solar illumination at (4.30 +/- 0.25) mL.cm(-2).day(-1).
引用
收藏
页码:141 / 146
页数:6
相关论文
共 40 条
[31]  
Shen Q., 2008, J. Appl. Phys, P103
[32]   BIPOLAR CDSE/COS SEMICONDUCTOR PHOTOELECTRODE ARRAYS FOR UNASSISTED PHOTOLYTIC WATER SPLITTING [J].
SMOTKIN, ES ;
CERVERAMARCH, S ;
BARD, AJ ;
CAMPION, A ;
FOX, MA ;
MALLOUK, T ;
WEBBER, SE .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (01) :6-8
[33]   High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures [J].
Sudhagar, P. ;
Song, Taeseup ;
Lee, Dong Hyun ;
Mora-Sero, Ivan ;
Bisquert, Juan ;
Laudenslager, Michael ;
Sigmund, Wolfgang M. ;
Park, Won Il ;
Paik, Ungyu ;
Kang, Yong Soo .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (16) :1984-1990
[34]  
Tang J, 2011, NAT MATER, V10, P765, DOI [10.1038/nmat3118, 10.1038/NMAT3118]
[35]   Influence of Plasmonic Au Nanoparticles on the Photoactivity of Fe2O3 Electrodes for Water Splitting [J].
Thimsen, Elijah ;
Le Formal, Florian ;
Graetzel, Michael ;
Warren, Scott C. .
NANO LETTERS, 2011, 11 (01) :35-43
[36]   Plasmon Enhanced Solar-to-Fuel Energy Conversion [J].
Thomann, Isabel ;
Pinaud, Blaise A. ;
Chen, Zhebo ;
Clemens, Bruce M. ;
Jaramillo, Thomas F. ;
Brongersma, Mark L. .
NANO LETTERS, 2011, 11 (08) :3440-3446
[37]   Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis [J].
Tilley, S. David ;
Cornuz, Maurin ;
Sivula, Kevin ;
Graetzel, Michael .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (36) :6405-6408
[38]   Solar hydrogen production with nanostructured metal oxides [J].
van de Krol, Roe ;
Liang, Yongqi ;
Schoonman, Joop .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (20) :2311-2320
[39]   Solar Water Splitting Cells [J].
Walter, Michael G. ;
Warren, Emily L. ;
McKone, James R. ;
Boettcher, Shannon W. ;
Mi, Qixi ;
Santori, Elizabeth A. ;
Lewis, Nathan S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6446-6473
[40]   Tuning Semiconductor Band Edge Energies for Solar Photocatalysis via Surface Ligand Passivation [J].
Yang, Shenyuan ;
Prendergast, David ;
Neaton, Jeffrey B. .
NANO LETTERS, 2012, 12 (01) :383-388