Switch of coenzyme specificity of p-hydroxybenzoate hydroxylase

被引:48
作者
Eppink, MHM
Overkamp, KM
Schreuder, HA
Van Berkel, WJH [1 ]
机构
[1] Agr Univ Wageningen, Dept Biomol Sci, Biochem Lab, NL-6703 HA Wageningen, Netherlands
[2] Hoechst Marion Roussel, Core Res Funct, D-65926 Frankfurt, Germany
关键词
aromatic hydroxylase; coenzyme specificity; flavoprotein; protein engineering; X-ray structural analysis;
D O I
10.1006/jmbi.1999.3015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
p-Hydroxybenzoate hydroxylase (PHBH) is the archetype of the family of NAD(P)H-dependent flavoprotein aromatic hydroxylases. These enzymes share a conserved FAD-binding domain but lack a recognizable fold for binding the pyridine nucleotide. We have switched the coenzyme specificity of strictly NADPH-dependent PHBH from Pseudomonas fluorescens by site-directed mutagenesis. To that end, we altered the solvent exposed helix H2 region (residues 33-40) of the FAD-binding domain. Non-conservative selective replacements of Arg33 and Tyr38 weakened the binding of NADPH without disturbing the protein architecture. Introduction of a basic residue at position 34 increased the NADPH binding strength. Double (M2) and quadruple (M4) substitutions in the N-terminal part of helix H2 did not change the coenzyme specificity. By extending the replacements towards residues 38 and 40, M5 and M6 mutants were generated which were catalytically more efficient with NADH than with NADPH. It is concluded that specificity in P. fluorescens PHBH is conferred by interactions of Arg33, Tyr38 and Arg42 with the 2'-phosphate moiety of bound NADPH, and that introduction of an acidic group at position 38 potentially enables the recognition of the 2'-hydroxy group of NADH. This is the first report on the coenzyme reversion of a flavoprotein aromatic hydroxylase. (C) 1999 Academic Press.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 64 条
[1]   STRUCTURAL CONSEQUENCES OF SEQUENCE PATTERNS IN THE FINGERPRINT REGION OF THE NUCLEOTIDE BINDING FOLD - IMPLICATIONS FOR NUCLEOTIDE SPECIFICITY [J].
BAKER, PJ ;
BRITTON, KL ;
RICE, DW ;
ROB, A ;
STILLMAN, TJ .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (02) :662-671
[2]   Protein motifs .9. The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins [J].
Bellamacina, CR .
FASEB JOURNAL, 1996, 10 (11) :1257-1269
[3]   D175 DISCRIMINATES BETWEEN NADH AND NADPH IN THE COENZYME BINDING-SITE OF LACTOBACILLUS-DELBRUECKII SUBSP BULGARICUS D-LACTATE DEHYDROGENASE [J].
BERNARD, N ;
JOHNSEN, K ;
HOLBROOK, JJ ;
DELCOUR, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 208 (03) :895-900
[4]   CREATION OF AN NADP-DEPENDENT PYRUVATE-DEHYDROGENASE MULTIENZYME COMPLEX BY PROTEIN ENGINEERING [J].
BOCANEGRA, JA ;
SCRUTTON, NS ;
PERHAM, RN .
BIOCHEMISTRY, 1993, 32 (11) :2737-2740
[5]  
BRUNGER AT, 1992, SYSTEM CRYSTALLOGRAP
[6]   RIBBONS 2 0 [J].
CARSON, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :958-&
[7]  
Carugo O, 1997, PROTEINS, V28, P10, DOI 10.1002/(SICI)1097-0134(199705)28:1<10::AID-PROT2>3.0.CO
[8]  
2-N
[9]   A HIGHLY-ACTIVE DECARBOXYLATING DEHYDROGENASE WITH RATIONALLY INVERTED COENZYME SPECIFICITY [J].
CHEN, RD ;
GREER, A ;
DEAN, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11666-11670
[10]   Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase [J].
Chen, RD ;
Greer, A ;
Dean, AM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12171-12176