Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes

被引:570
作者
Hwang, Tae Hoon [1 ]
Lee, Yong Min [2 ]
Kong, Byung-Seon [3 ]
Seo, Jin-Seok [3 ]
Choi, Jang Wook [1 ,4 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea
[2] Hanbat Natl Univ, Dept Appl Chem, Taejon 305719, South Korea
[3] KCC Cent Res Inst, Yongin 446912, Gyunggi Do, South Korea
[4] Korea Adv Inst Sci & Technol, KAIST Inst Nano Century, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium ion battery; anodes; silicon nanoparticle; dual nozzle; electrospinning; core-shell; PERFORMANCE; STORAGE; NANOCOMPOSITES; NANOFIBERS; CHALLENGES; NANOWIRES;
D O I
10.1021/nl203817r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Because of its unprecedented theoretical capacity near 4000 mAh/g, which is approximately 10-fold larger compared to those of the current commercial graphite anodes, silicon has been the most promising anode for lithium ion batteries, particularly targeting large-scale energy storage applications including electrical vehicles and utility grids. Nevertheless, Si suffers from its short cycle life as well as the limitation for scalable electrode fabrication. Herein, we develop an electrospinning process to produce core shell fiber electrodes using a dual nozzle in a scalable manner. In the core shell fibers, commercially available nanoparticles in the core are wrapped by the carbon shell. The unique core shell structure resolves various issues of Si anode operations, such as pulverization, vulnerable contacts between Si and carbon conductors, and an unstable sold-electrolyte interphase, thereby exhibiting outstanding cell performance: a gravimetric capacity as high as 1384 mAh/g, a 5 min discharging rate capability while retaining 721 mAh/g, and cycle life of 300 cycles with almost no capacity loss. The electrospun core shell one-dimensional fibers suggest a new design principle for robust and scalable lithium battery electrodes suffering from volume expansion.
引用
收藏
页码:802 / 807
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 2008, 2008 ANN PROGR REP E
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[5]   Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :538-543
[6]   Metal current collector-free freestanding silicon-carbon 1D nanocomposites for ultralight anodes in lithium ion batteries [J].
Choi, Jang Wook ;
Hu, Liangbing ;
Cui, Lifeng ;
McDonough, James R. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :8311-8316
[7]   Stepwise Nanopore Evolution in One-Dimensional Nanostructures [J].
Choi, Jang Wook ;
McDonough, James ;
Jeong, Sangmoo ;
Yoo, Jee Soo ;
Chan, Candace K. ;
Cui, Yi .
NANO LETTERS, 2010, 10 (04) :1409-1413
[8]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197