A note on adaptive group lasso

被引:257
作者
Wang, Hansheng [1 ]
Leng, Chenlei
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.csda.2008.05.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Group lasso is a natural extension of lasso and selects variables in a grouped manner. However, group lasso suffers from estimation inefficiency and selection inconsistency, To remedy these problems, we propose the adaptive group lasso method. We show theoretically that the new method is able to identify the true model consistently, and the resulting estimator can be as efficient as oracle. Numerical studies confirmed our theoretical findings. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5277 / 5286
页数:10
相关论文
共 13 条
[1]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[2]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[3]   Penalized regressions: The bridge versus the lasso [J].
Fu, WJJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (03) :397-416
[4]  
Knight K, 2000, ANN STAT, V28, P1356
[5]  
Leng CL, 2006, STAT SINICA, V16, P1273
[7]   Tuning parameter selectors for the smoothly clipped absolute deviation method [J].
Wang, Hansheng ;
Li, Runze ;
Tsai, Chih-Ling .
BIOMETRIKA, 2007, 94 (03) :553-568
[8]   Robust regression shrinkage and consistent variable selection through the LAD-lasso [J].
Wang, Hansheng ;
Li, Guodong ;
Jiang, Guohua .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2007, 25 (03) :347-355
[9]  
Wang HS, 2007, J ROY STAT SOC B, V69, P63
[10]   Model selection and estimation in regression with grouped variables [J].
Yuan, M ;
Lin, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :49-67