Robust regression shrinkage and consistent variable selection through the LAD-lasso

被引:392
作者
Wang, Hansheng [1 ]
Li, Guodong
Jiang, Guohua
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
LAD; LAD-lasso; Lasso; oracle property;
D O I
10.1198/073500106000000251
中图分类号
F [经济];
学科分类号
02 ;
摘要
The least absolute deviation (LAD) regression is a useful method for robust regression, and the least absolute shrinkage and selection operator (lasso) is a popular choice for shrinkage estimation and variable selection. In this article we combine these two classical ideas together to produce LAD-lasso. Compared with the LAD regression, LAD-lasso can do parameter estimation and variable selection simultaneously. Compared with the traditional lasso, LAD-lasso is resistant to heavy-tailed errors or outliers in the response. Furthermore, with easily estimated tuning parameters, the LAD-lasso estimator enjoys the same asymptotic efficiency as the unpenalized LAD estimator obtained under the true model (i.e., the oracle property). Extensive simulation studies demonstrate satisfactory finite-sample performance of LAD-lasso, and a real example is analyzed for illustration purposes.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 23 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267, DOI [DOI 10.1007/978-1-4612-1694-0_15, 10.1007/978-1-4612-1694-0_15]
[2]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[3]  
Bloomfield P., 1983, LEAST ABSOLUTE DEVIA
[4]  
Craven P., 1979, NUMER MATH, V31, P337
[5]   M-ESTIMATION FOR AUTOREGRESSIONS WITH INFINITE VARIANCE [J].
DAVIS, RA ;
KNIGHT, K ;
LIU, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) :145-180
[6]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[7]   MODEL SELECTION FOR LEAST ABSOLUTE DEVIATIONS REGRESSION IN SMALL SAMPLES [J].
HURVICH, CM ;
TSAI, CL .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) :259-265
[8]  
HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663
[9]  
Knight K, 2000, ANN STAT, V28, P1356
[10]  
Knight K, 1998, ANN STAT, V26, P755