Robust regression shrinkage and consistent variable selection through the LAD-lasso

被引:392
作者
Wang, Hansheng [1 ]
Li, Guodong
Jiang, Guohua
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
LAD; LAD-lasso; Lasso; oracle property;
D O I
10.1198/073500106000000251
中图分类号
F [经济];
学科分类号
02 ;
摘要
The least absolute deviation (LAD) regression is a useful method for robust regression, and the least absolute shrinkage and selection operator (lasso) is a popular choice for shrinkage estimation and variable selection. In this article we combine these two classical ideas together to produce LAD-lasso. Compared with the LAD regression, LAD-lasso can do parameter estimation and variable selection simultaneously. Compared with the traditional lasso, LAD-lasso is resistant to heavy-tailed errors or outliers in the response. Furthermore, with easily estimated tuning parameters, the LAD-lasso estimator enjoys the same asymptotic efficiency as the unpenalized LAD estimator obtained under the true model (i.e., the oracle property). Extensive simulation studies demonstrate satisfactory finite-sample performance of LAD-lasso, and a real example is analyzed for illustration purposes.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 23 条
[11]   Conditional quantile estimation and inference for ARCH models [J].
Koenker, R ;
Zhao, QS .
ECONOMETRIC THEORY, 1996, 12 (05) :793-813
[12]  
Ling S., 2005, J ROYAL STAT SOC B, V67, P1
[13]  
MCQUARRIE DR, 1998, REGRESSION TIME SERI
[14]  
Nissim D., 2001, REV ACCOUNT STUD, V6, P109, DOI [10.1023/A, DOI 10.1023/A:1011338221623]
[15]   Least absolute deviations estimation for ARCH and GARCH models [J].
Peng, L ;
Yao, QW .
BIOMETRIKA, 2003, 90 (04) :967-975
[16]   ASYMPTOTICS FOR LEAST ABSOLUTE DEVIATION REGRESSION-ESTIMATORS [J].
POLLARD, D .
ECONOMETRIC THEORY, 1991, 7 (02) :186-199
[17]   ESTIMATING DIMENSION OF A MODEL [J].
SCHWARZ, G .
ANNALS OF STATISTICS, 1978, 6 (02) :461-464
[18]  
Shao J, 1997, STAT SINICA, V7, P221
[19]   A joint regression variable and autoregressive order selection criterion [J].
Shi, PD ;
Tsai, CL .
JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (06) :923-941
[20]   Regression model selection - a residual likelihood approach [J].
Shi, PD ;
Tsai, CL .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :237-252