Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla

被引:120
作者
Parkes, LM
Schwarzbach, JV
Bouts, AA
Deckers, RHR
Pullens, P
Kerskens, CM
Norris, DG
机构
[1] Univ Nijmegen, FC Donders Ctr Cognit Neuroimaging, Nijmegen, Netherlands
[2] Univ Maastricht, FC Donders Ctr Cognit Neuroimaging, Maastricht, Netherlands
[3] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
关键词
BOLD; fMRI; spatial resolution; spin echo;
D O I
10.1002/mrm.20712
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The blood oxygen level dependent (BOLD) response, as measured with fMRI, offers good spatial resolution compared to other non-invasive neuroimaging methods. The use of a spin echo technique rather than the conventional gradient echo technique may further improve the resolution by refocusing static dephasing effects around the larger vessels, so sensitizing the signal to the microvasculature. In this work the width of the point spread function (PSF) of the BOLD response at a field strength of 3 Tesla is compared for these two approaches. A double echo EPI pulse sequence with simultaneous collection of gradient echo and spin echo signal allows a direct comparison of the techniques. Rotating multiple-wedge stimuli of different spatial frequencies are used to estimate the width of the BOLD response. Waves of activation are created on the surface of the visual cortex, which begin to overlap as the wedge separation decreases. The modulation of the BOLD response decreases with increasing spatial frequency in a manner dependent on its width. The spin echo response shows a 13% reduction in the width of the PSF, but at a cost of at least 3-fold reduction in contrast to noise ratio.
引用
收藏
页码:1465 / 1472
页数:8
相关论文
共 35 条
[1]   SPIN-ECHO AND GRADIENT-ECHO EPI OF HUMAN BRAIN ACTIVATION USING BOLD CONTRAST - A COMPARATIVE-STUDY AT 1.5 T [J].
BANDETTINI, PA ;
WONG, EC ;
JESMANOWICZ, A ;
HINKS, RS ;
HYDE, JS .
NMR IN BIOMEDICINE, 1994, 7 (1-2) :12-20
[2]  
BANDETTINI PA, 1993, P 12 ANN M SOC MAGN, P169
[3]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[4]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[5]   Single-shot T*2 measurement to establish optimum echo time for fMRI:: Studies of the visual, motor, and auditory cortices at 3.0 T [J].
Clare, S ;
Francis, S ;
Morris, PG ;
Bowtell, R .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (05) :930-933
[6]   Functional MRI at 1.5 tesla: A comparison of the blood oxygenation level-dependent signal and electrophysiology [J].
Disbrow, EA ;
Slutsky, DA ;
Roberts, TPL ;
Krubitzer, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9718-9723
[7]  
Duong TQ, 2000, MAGN RESON MED, V44, P231, DOI 10.1002/1522-2594(200008)44:2<231::AID-MRM10>3.0.CO
[8]  
2-T
[9]   Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-echo and spin-echo fMRI with suppression of blood effects [J].
Duong, TQ ;
Yacoub, E ;
Adriany, G ;
Hu, XP ;
Ugurbil, K ;
Kim, SG .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (06) :1019-1027
[10]   Retinotopic organization in human visual cortex and the spatial precision of functional MRI [J].
Engel, SA ;
Glover, GH ;
Wandell, BA .
CEREBRAL CORTEX, 1997, 7 (02) :181-192