DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds: Analysis by single-turnover kinetics

被引:35
作者
Potapova, O
Chan, C
DeLucia, AM
Helquist, SA
Kool, ET
Grindley, NDF
Joyce, CM
机构
[1] Yale Univ, Bass Ctr Mol & Struct Biol, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
D O I
10.1021/bi051792i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen-bonding ability in the nascent pair, the efficiency (k(pol)/K-d) of the polymerase reaction is decreased by 30-fold, affecting the ground state (K-d) and transition state (k(pol)) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen-bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most of the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer-terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen-bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. In contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions and more dependent upon hydrogen bonding between base-paired partners.
引用
收藏
页码:890 / 898
页数:9
相关论文
共 42 条
[1]   How E-coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides [J].
Astatke, M ;
Grindley, NDF ;
Joyce, CM .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 278 (01) :147-165
[2]   Base miscoding and strand misalignment errors by mutator klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain [J].
Bell, JB ;
Eckert, KA ;
Joyce, CM ;
Kunkel, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (11) :7345-7351
[3]   A MUTANT OF DNA-POLYMERASE-I (KLENOW FRAGMENT) WITH REDUCED FIDELITY [J].
CARROLL, SS ;
COWART, M ;
BENKOVIC, SJ .
BIOCHEMISTRY, 1991, 30 (03) :804-813
[4]   Facile polymerization of dNTPs bearing unnatural base analogues by DNA polymerase α and Klenow fragment (DNA polymerase I) [J].
Chiaramonte, M ;
Moore, CL ;
Kincaid, K ;
Kuchta, RD .
BIOCHEMISTRY, 2003, 42 (35) :10472-10481
[5]   GENETIC AND CRYSTALLOGRAPHIC STUDIES OF THE 3',5'-EXONUCLEOLYTIC SITE OF DNA-POLYMERASE-I [J].
DERBYSHIRE, V ;
FREEMONT, PS ;
SANDERSON, MR ;
BEESE, L ;
FRIEDMAN, JM ;
JOYCE, CM ;
STEITZ, TA .
SCIENCE, 1988, 240 (4849) :199-201
[6]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258
[7]   Structure of the replicating complex of a pol α family DNA polymerase [J].
Franklin, MC ;
Wang, JM ;
Steitz, TA .
CELL, 2001, 105 (05) :657-667
[8]   Solution structure of a nonpolar, non-hydrogen-bonded base pair surrogate in DNA [J].
Guckian, KM ;
Krugh, TR ;
Kool, ET .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (29) :6841-6847
[9]   Factors contributing to aromatic stacking in water: Evaluation in the context of DNA [J].
Guckian, KM ;
Schweitzer, BA ;
Ren, RXF ;
Sheils, CJ ;
Tahmassebi, DC ;
Kool, ET .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (10) :2213-2222
[10]   Beyond A, C, G and T: augmenting nature's alphabet [J].
Henry, AA ;
Romesberg, FE .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (06) :727-733