Free Carrier Generation and Recombination in Polymer-Wrapped Semiconducting Carbon Nanotube Films and Heterojunctions

被引:41
作者
Bindl, Dominick J. [1 ]
Ferguson, Andrew J. [3 ]
Wu, Meng-Yin [2 ]
Kopidakis, Nikos [3 ]
Blackburn, Jeffrey L. [3 ]
Arnold, Michael S. [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Elect Engn, Madison, WI 53706 USA
[3] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2013年 / 4卷 / 21期
基金
美国国家科学基金会;
关键词
ORGANIC SOLAR-CELLS; PHOTOVOLTAIC DEVICES; CHARGE SEPARATION; PERFORMANCE; ENERGY; ELECTRODES; DYNAMICS; EXCITONS; MOBILITY;
D O I
10.1021/jz401711m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising for solution-processed, thin film photovoltaics due to their strong near-infrared absorptivity and excellent transport properties. We report on the generation yield and recombination kinetics of free charge carriers in photoexcited thin films of polymer-wrapped s-SWCNTs with and without an overlying electron-accepting C-60 layer, using time-resolved microwave photoconductivity (TRMC). Free carriers are generated in neat s-SWCNT films, even without an obvious driving force for exciton dissociation. However, most carriers recombine in <10 ns. Adding C-60 increases the yield and extends the lifetime of a significant fraction of free carriers to >> 100 ns via interfacial charge separation. Spectral dependencies indicate that the driving force for interfacial electron transfer large-diameter SWCNTs, from which we approximate (9,7) s-SWCNT energetics. We estimate a free carrier generation yield of similar to 6% in neat s-SWCNT films and 9 GHz SWCNT hole mobility of >1.3 cm(2) V-1 s(-1). These studies improve understanding of s-SWCNT photoresponses in solar cells and photodetectors.
引用
收藏
页码:3550 / 3559
页数:10
相关论文
共 56 条
[51]   Ultrafast Charge Photogeneration in Semiconducting Carbon Nanotubes [J].
Soavi, G. ;
Scotognella, F. ;
Brida, D. ;
Hefner, T. ;
Spaeth, F. ;
Antognazza, M. R. ;
Hertel, T. ;
Lanzani, G. ;
Cerullo, G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (20) :10849-10855
[52]   Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode [J].
van de Lagemaat, Jao ;
Barnes, Teresa M. ;
Rumbles, Garry ;
Shaheen, Sean E. ;
Coutts, Timothy J. ;
Weeks, Chris ;
Levitsky, Igor ;
Peltola, Jorma ;
Glatkowski, Paul .
APPLIED PHYSICS LETTERS, 2006, 88 (23)
[53]   Trions in semiconducting single-walled carbon nanotubes [J].
Watanabe, Kouta ;
Asano, Kenichi .
PHYSICAL REVIEW B, 2012, 85 (03)
[54]   Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes [J].
Yuma, B. ;
Berciaud, S. ;
Besbas, J. ;
Shaver, J. ;
Santos, S. ;
Ghosh, S. ;
Weisman, R. B. ;
Cognet, L. ;
Gallart, M. ;
Ziegler, M. ;
Hoenerlage, B. ;
Lounis, B. ;
Gilliot, P. .
PHYSICAL REVIEW B, 2013, 87 (20)
[55]   Mechanism of Primary Charge Photogeneration in Polyfluorene Copolymer/Fullerene Blends and Influence of the Donor/Acceptor Lowest Unoccupied Molecular Orbital Level Offset [J].
Zhang, Wei ;
Wang, Yu-Wei ;
Hu, Rong ;
Fu, Li-Min ;
Ai, Xi-Cheng ;
Zhang, Jian-Ping ;
Hou, Jian-Hui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (02) :735-749
[56]   Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors [J].
Zhou, XJ ;
Park, JY ;
Huang, SM ;
Liu, J ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)