Genome wide identification of chilling responsive microRNAs in Prunus persica

被引:102
作者
Barakat, Abdelali [1 ]
Sriram, Aditya [1 ,2 ]
Park, Joseph [3 ]
Zhebentyayeva, Tetyana [1 ]
Main, Dorrie [4 ]
Abbott, Albert [1 ]
机构
[1] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29631 USA
[2] Clemson Univ, Dept Comp Sci, Clemson, SC 29631 USA
[3] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[4] Washington State Univ, Dept Hort & Landscape Architecture, Pullman, WA 99164 USA
来源
BMC GENOMICS | 2012年 / 13卷
关键词
microRNAs; Distribution; Expression; Cold stress; Chilling requirement; Bud development; STRESS-REGULATED MICRORNAS; ARABIDOPSIS-THALIANA; SMALL RNAS; DNA METHYLATION; ROSACEAE GENOMICS; PLANTS; SEQUENCES; SIRNA; FLC; VERNALIZATION;
D O I
10.1186/1471-2164-13-481
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: MicroRNAs (miRNAs) are small RNAs (sRNAs) approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. For this reason, we chose to identify and characterize the conserved and non-conserved miRNA component of peach (Prunus persica (L.) Batsch) focusing our efforts on both the recently released whole genome sequence of peach and sRNA transcriptome sequences from two tissues representing non-dormant leaves and dormant leaf buds. Conserved and non-conserved miRNAs, and their targets were identified. These sRNA resources were used to identify cold-responsive miRNAs whose gene targets co-localize with previously described QTLs for chilling requirement (CR). Results: Analysis of 21 million peach sRNA reads allowed us to identify 157 and 230 conserved and non-conserved miRNA sequences. Among the non-conserved miRNAs, we identified 205 that seem to be specific to peach. Comparative genome analysis between peach and Arabidopsis showed that conserved miRNA families, with the exception of miR5021, are similar in size. Sixteen of these conserved miRNA families are deeply rooted in land plant phylogeny as they are present in mosses and/or lycophytes. Within the other conserved miRNA families, five families (miR1446, miR473, miR479, miR3629, and miR3627) were reported only in tree species (Populus trichocarpa, Citrus trifolia, and Prunus persica). Expression analysis identified several up-regulated or down-regulated miRNAs in winter buds versus young leaves. A search of the peach proteome allowed the prediction of target genes for most of the conserved miRNAs and a large fraction of non-conserved miRNAs. A fraction of predicted targets in peach have not been previously reported in other species. Several conserved and non-conserved miRNAs and miRNA-regulated genes co-localize with Quantitative Trait Loci (QTLs) for chilling requirement (CR-QTL) and bloom date (BD-QTL). Conclusions: In this work, we identified a large set of conserved and non-conserved miRNAs and describe their evolutionary footprint in angiosperm lineages. Several of these miRNAs were induced in winter buds and co-localized with QTLs for chilling requirement and bloom date thus making their gene targets potential candidates for mediating plant responses to cold stress. Several peach homologs of genes participating in the regulation of vernalization in Arabidopsis were identified as differentially expressed miRNAs targets, potentially linking these gene activities to cold responses in peach dormant buds. The non-conserved miRNAs may regulate cellular, physiological or developmental processes specific to peach and/or other tree species.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome [J].
Addo-Quaye, Charles ;
Eshoo, Tifani W. ;
Bartel, David P. ;
Axtell, Michael J. .
CURRENT BIOLOGY, 2008, 18 (10) :758-762
[2]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[3]   Seasonal and developmental timing of flowering [J].
Amasino, Richard .
PLANT JOURNAL, 2010, 61 (06) :1001-1013
[4]   Conservation and divergence of microRNAs in Populus [J].
Barakat A. ;
Wall P.K. ;
DiLoreto S. ;
dePamphilis C.W. ;
Carlson J.E. .
BMC Genomics, 8 (1)
[5]   Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants [J].
Barakat, Abdelali ;
Wall, Kerr ;
Leebens-Mack, Jim ;
Wang, Yunjiao J. ;
Carlson, John E. ;
dePamphilis, Claude W. .
PLANT JOURNAL, 2007, 51 (06) :991-1003
[6]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[7]   Vernalization requires epigenetic silencing of FLC by histone methylation [J].
Bastow, R ;
Mylne, JS ;
Lister, C ;
Lippman, Z ;
Martienssen, RA ;
Dean, C .
NATURE, 2004, 427 (6970) :164-167
[8]   Arabidopsis HEN1:: A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance [J].
Boutet, S ;
Vazquez, F ;
Liu, J ;
Béclin, C ;
Fagard, M ;
Gratias, A ;
Morel, JB ;
Crété, P ;
Chen, XM ;
Vaucheret, H .
CURRENT BIOLOGY, 2003, 13 (10) :843-848
[9]   A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues [J].
Carra, Andrea ;
Gambino, Giorgio ;
Schubert, Andrea .
ANALYTICAL BIOCHEMISTRY, 2007, 360 (02) :318-320
[10]   Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) [J].
Dirlewanger, E ;
Cosson, P ;
Tavaud, M ;
Aranzana, MJ ;
Poizat, C ;
Zanetto, A ;
Arús, P ;
Laigret, F .
THEORETICAL AND APPLIED GENETICS, 2002, 105 (01) :127-138