Protein folding kinetics and thermodynamics from atomistic simulation

被引:238
作者
Piana, Stefano [1 ]
Lindorff-Larsen, Kresten [1 ]
Shaw, David E. [1 ,2 ]
机构
[1] DE Shaw Res, New York, NY 10036 USA
[2] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA
关键词
Amber ff99SB*-ILDN; enthalpy; heat capacity; pre-exponential factor; transition path time; VILLIN HEADPIECE SUBDOMAIN; MOLECULAR-DYNAMICS SIMULATIONS; TRANSITION-STATE; FORCE-FIELDS; SIDE-CHAIN;
D O I
10.1073/pnas.1201811109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in simulation techniques and computing hardware have created a substantial overlap between the timescales accessible to atomic-level simulations and those on which the fastest-folding proteins fold. Here we demonstrate, using simulations of four variants of the human villin headpiece, how simulations of spontaneous folding and unfolding can provide direct access to thermodynamic and kinetic quantities such as folding rates, free energies, folding enthalpies, heat capacities, Phi-values, and temperature-jump relaxation profiles. The quantitative comparison of simulation results with various forms of experimental data probing different aspects of the folding process can facilitate robust assessment of the accuracy of the calculations while providing a detailed structural interpretation for the experimental observations. In the example studied here, the analysis of folding rates, F-values, and folding pathways provides support for the notion that a norleucine double mutant of villin folds five times faster than the wild-type sequence, but following a slightly different pathway. This work showcases how computer simulation has now developed into a mature tool for the quantitative computational study of protein folding and dynamics that can provide a valuable complement to experimental techniques.
引用
收藏
页码:17845 / 17850
页数:6
相关论文
共 47 条
[1]  
[Anonymous], 2009, P C HIGH PERF COMP N
[2]   MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale [J].
Beauchamp, Kyle A. ;
Bowman, Gregory R. ;
Lane, Thomas J. ;
Maibaum, Lutz ;
Haque, Imran S. ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (10) :3412-3419
[3]   Quantitative comparison of villin headpiece subdomain simulations and triplet-triplet energy transfer experiments [J].
Beauchamp, Kyle A. ;
Ensign, Daniel L. ;
Das, Rhiju ;
Pande, Vijay S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (31) :12734-12739
[4]   Reaction coordinates and rates from transition paths [J].
Best, RB ;
Hummer, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (19) :6732-6737
[5]   Atomistic molecular simulations of protein folding [J].
Best, Robert B. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2012, 22 (01) :52-61
[6]   Protein Simulations with an Optimized Water Model: Cooperative Helix Formation and Temperature-Induced Unfolded State Collapse [J].
Best, Robert B. ;
Mittal, Jeetain .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (46) :14916-14923
[7]   Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides [J].
Best, Robert B. ;
Hummer, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (26) :9004-9015
[8]   Protein folded states are kinetic hubs [J].
Bowman, Gregory R. ;
Pande, Vijay S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (24) :10890-10895
[9]   Progress and challenges in the automated construction of Markov state models for full protein systems [J].
Bowman, Gregory R. ;
Beauchamp, Kyle A. ;
Boxer, George ;
Pande, Vijay S. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (12)
[10]   Coarse master equations for peptide folding dynamics [J].
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (19) :6057-6069