Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

被引:1337
作者
Jiang, Jingkun [1 ]
Oberdorster, Gunter [2 ]
Biswas, Pratim [1 ]
机构
[1] Washington Univ, Aerosol & Air Qual Res Lab, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] Univ Rochester, Dept Environm Med, Rochester, NY 14642 USA
关键词
Nanoparticle; Toxicology; Nanotoxicology; Health; Safety; Ultrasonication; Nanotechnology; Environment; QUANTUM DOTS; ULTRAFINE PARTICLES; PULMONARY TOXICITY; CELLULAR TOXICITY; CARBON-NANOTUBES; IN-VITRO; NANOMATERIALS; BRAIN; STABILIZATION; SPECTROMETRY;
D O I
10.1007/s11051-008-9446-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 50 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 2000, 14887 ISO
[3]   The potential risks of nanomaterials: a review carried out for ECETOC [J].
Borm, Paul J. A. ;
Robbins, David ;
Haubold, Stephan ;
Kuhlbusch, Thomas ;
Fissan, Heinz ;
Donaldson, Ken ;
Schins, Roel ;
Stone, Vicki ;
Kreyling, Wolfgang ;
Lademann, Jurgen ;
Krutmann, Jean ;
Warheit, David ;
Oberdorster, Eva .
PARTICLE AND FIBRE TOXICOLOGY, 2006, 3 (01)
[4]   Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems [J].
Brant, J ;
Lecoanet, H ;
Wiesner, MR .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (4-5) :545-553
[5]   Probing BSA binding to citrate-coated gold nanoparticles and surfaces [J].
Brewer, SH ;
Glomm, WR ;
Johnson, MC ;
Knag, MK ;
Franzen, S .
LANGMUIR, 2005, 21 (20) :9303-9307
[6]   A comparison of dispersing media for various engineered carbon nanoparticles [J].
Buford M.C. ;
Hamilton Jr. R.F. ;
Holian A. .
Particle and Fibre Toxicology, 4 (1)
[7]   Renal clearance of quantum dots [J].
Choi, Hak Soo ;
Liu, Wenhao ;
Misra, Preeti ;
Tanaka, Eiichi ;
Zimmer, John P. ;
Ipe, Binil Itty ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NATURE BIOTECHNOLOGY, 2007, 25 (10) :1165-1170
[8]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[9]  
Derjaguin B.V., 1941, ACTA PHYSICOCHIM URS, V14, P733
[10]   Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials [J].
Dutta, Debamitra ;
Sundaram, Shanmugavelayutham Kamakshi ;
Teeguarden, Justin Gary ;
Riley, Brian Joseph ;
Fifield, Leonard Sheldon ;
Jacobs, Jon Morrell ;
Addleman, Shane Raymond ;
Kaysen, George Alan ;
Moudgil, Brij Mohan ;
Weber, Thomas Joseph .
TOXICOLOGICAL SCIENCES, 2007, 100 (01) :303-315