Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion

被引:263
作者
Cardoso, M. Jorge [1 ,2 ]
Modat, Marc [1 ,2 ]
Wolz, Robin [3 ]
Melbourne, Andrew [1 ]
Cash, David [2 ]
Rueckert, Daniel [3 ]
Ourselin, Sebastien [1 ,2 ]
机构
[1] UCL, CMIC, Translat Imaging Grp, London WC1E 6BT, England
[2] UCL, Inst Neurol, DRC, London WC1N 3AR, England
[3] Univ London Imperial Coll Sci Technol & Med, Biomed Image Anal BioMedIA Grp, London WC2R 2LS, England
基金
欧盟第七框架计划; 英国工程与自然科学研究理事会;
关键词
Information propagation; label fusion; parcelation; tissue segmentation; BRAIN; ATLAS; REGISTRATION; VALIDATION;
D O I
10.1109/TMI.2015.2418298
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Clinical annotations, such as voxel-wise binary or probabilistic tissue segmentations, structural parcellations, pathological regions-of-interest and anatomical landmarks are key to many clinical studies. However, due to the time consuming nature of manually generating these annotations, they tend to be scarce and limited to small subsets of data. This work explores a novel framework to propagate voxel-wise annotations between morphologically dissimilar images by diffusing and mapping the available examples through intermediate steps. A spatially-variant graph structure connecting morphologically similar subjects is introduced over a database of images, enabling the gradual diffusion of information to all the subjects, even in the presence of large-scale morphological variability. We illustrate the utility of the proposed framework on two example applications: brain parcellation using categorical labels and tissue segmentation using probabilistic features. The application of the proposed method to categorical label fusion showed highly statistically significant improvements when compared to state-of-the-art methodologies. Significant improvements were also observed when applying the proposed framework to probabilistic tissue segmentation of both synthetic and real data, mainly in the presence of large morphological variability.
引用
收藏
页码:1976 / 1988
页数:13
相关论文
共 35 条
[1]  
[Anonymous], 2002, P 19 INT C MACH LEAR
[2]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[3]   Twenty new digital brain phantoms for creation of validation image data bases [J].
Aubert-Broche, Berengere ;
Griffin, Mark ;
Pike, G. Bruce ;
Evans, Alan C. ;
Collins, D. Louis .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1410-1416
[4]  
Bhatia KK, 2012, LECT NOTES COMPUT SC, V7510, P512, DOI 10.1007/978-3-642-33415-3_63
[5]   Voxel-based morphometry should not be used with imperfectly registered images [J].
Bookstein, FL .
NEUROIMAGE, 2001, 14 (06) :1454-1462
[6]   Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies [J].
Burgos, Ninon ;
Cardoso, M. Jorge ;
Thielemans, Kris ;
Modat, Marc ;
Pedemonte, Stefano ;
Dickson, John ;
Barnes, Anna ;
Ahmed, Rebekah ;
Mahoney, Colin J. ;
Schott, Jonathan M. ;
Duncan, John S. ;
Atkinson, David ;
Arridge, Simon R. ;
Hutton, Brian F. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2332-2341
[7]  
Cardoso M. J., 2013, MATH FDN COMPUT ANAT, P49
[8]  
Cardoso MJ, 2012, LECT NOTES COMPUT SC, V7511, P262, DOI 10.1007/978-3-642-33418-4_33
[9]   LoAd: A locally adaptive cortical segmentation algorithm [J].
Cardoso, M. Jorge ;
Clarkson, Matthew J. ;
Ridgway, Gerard R. ;
Modat, Marc ;
Fox, Nick C. ;
Ourselin, Sebastien .
NEUROIMAGE, 2011, 56 (03) :1386-1397
[10]   Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps [J].
Coifman, RR ;
Lafon, S ;
Lee, AB ;
Maggioni, M ;
Nadler, B ;
Warner, F ;
Zucker, SW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7426-7431