The Muscle Stem Cell Niche: Regulation of Satellite Cells During Regeneration

被引:76
作者
Boonen, Kristel J. M. [1 ]
Post, Mark J. [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
[2] Maastricht Univ, Dept Physiol, CARIM, NL-6200 MD Maastricht, Netherlands
关键词
D O I
10.1089/ten.teb.2008.0045
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Satellite cells are considered to be adult skeletal muscle stem cells. Their ability to regenerate large muscle defects is highly dependent on their specific niche. When these cells are cultured in vitro, the loss of this niche leads to a loss of proliferative capacity and defective regeneration when implanted back into a muscle defect. The most important aspects of the niche will be discussed-in particular, the basement membrane, the niche's mechanical properties, its supporting cells, and the influence these features have on satellite cell activation, proliferation, and differentiation. Understanding more about the control of these satellite cell activities by the niche will facilitate their recruitment and effective deployment for regenerative medicine.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 200 条
[1]   HEPATOCYTE GROWTH-FACTOR ACTIVATES QUIESCENT SKELETAL-MUSCLE SATELLITE CELLS IN-VITRO [J].
ALLEN, RE ;
SHEEHAN, SM ;
TAYLOR, RG ;
KENDALL, TL ;
RICE, GM .
JOURNAL OF CELLULAR PHYSIOLOGY, 1995, 165 (02) :307-312
[2]   INHIBITION OF SKELETAL-MUSCLE SATELLITE CELL-DIFFERENTIATION BY TRANSFORMING GROWTH-FACTOR-BETA [J].
ALLEN, RE ;
BOXHORN, LK .
JOURNAL OF CELLULAR PHYSIOLOGY, 1987, 133 (03) :567-572
[3]   For the long run: Maintaining germinal niches in the adult brain [J].
Alvarez-Buylla, A ;
Lim, DA .
NEURON, 2004, 41 (05) :683-686
[4]   The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis [J].
Amthor, H ;
Huang, RJ ;
McKinnell, I ;
Christ, B ;
Kambadur, R ;
Sharma, M ;
Patel, K .
DEVELOPMENTAL BIOLOGY, 2002, 251 (02) :241-257
[5]   DISTINCTIVE PATTERNS OF BASIC FIBROBLAST GROWTH-FACTOR (BFGF) DISTRIBUTION IN DEGENERATING AND REGENERATING AREAS OF DYSTROPHIC (MDX) STRIATED MUSCLES [J].
ANDERSON, JE ;
LIU, L ;
KARDAMI, E .
DEVELOPMENTAL BIOLOGY, 1991, 147 (01) :96-109
[6]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[7]   Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation [J].
Asakura, A ;
Komaki, M ;
Rudnicki, MA .
DIFFERENTIATION, 2001, 68 (4-5) :245-253
[8]   The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle [J].
Ates, Kenan ;
Yang, Shi Yu ;
Orrell, Richard W. ;
Sinanan, Andrea C. M. ;
Simons, Paul ;
Solomon, Andrew ;
Beech, Steven ;
Goldspink, Geoffrey ;
Lewis, Mark P. .
FEBS LETTERS, 2007, 581 (14) :2727-2732
[9]   A three-dimensional in vitro model system to study the adaptation of craniofacial skeletal muscle following mechanostimulation [J].
Auluck, A ;
Mudera, V ;
Hunt, NP ;
Lewis, MP .
EUROPEAN JOURNAL OF ORAL SCIENCES, 2005, 113 (03) :218-224
[10]   A new approach to tissue engineering of vascularized skeletal muscle [J].
Bach, A. D. ;
Arkudas, A. ;
Tjiawi, J. ;
Polykandriotis, E. ;
Kneser, U. ;
Horch, R. E. ;
Beier, J. P. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2006, 10 (03) :716-726