Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems

被引:88
作者
Mahmoud, Emad E. [1 ]
机构
[1] Sohag Univ, Fac Sci, Dept Math, Sohag 82524, Egypt
关键词
complex complete synchronization; hyperchaotic; Lyapunov function; complex; LAG SYNCHRONIZATION; LORENZ SYSTEM; CHAOS SYNCHRONIZATION; PHASE SYNCHRONIZATION; UNCERTAIN PARAMETERS; DYNAMICAL-SYSTEMS; LU SYSTEMS; CHEN;
D O I
10.1002/mma.2793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the definition of complex complete synchronization (CCS) of hyperchaotic complex nonlinear systems that have not been introduced recently in the literature. This type of synchronization can study only for complex nonlinear systems. On the basis of Lyapunov function, a scheme is designed to achieve the CCS of two nonidentical hyperchaotic attractors of these systems. The effectiveness of the obtained results is illustrated by a simulation example. Numerical results are plotted to show state variables, modules errors, and phases errors of these hyperchaotic attractors after synchronization to prove that CCS is achieved. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 26 条
  • [1] Complex dynamics and phase synchronization in spatially extended ecological systems
    Blasius, B
    Huppert, A
    Stone, L
    [J]. NATURE, 1999, 399 (6734) : 354 - 359
  • [2] The synchronization of chaotic systems
    Boccaletti, S
    Kurths, J
    Osipov, G
    Valladares, DL
    Zhou, CS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2): : 1 - 101
  • [3] On the chaos synchronization phenomena
    Femat, R
    Solís-Perales, G
    [J]. PHYSICS LETTERS A, 1999, 262 (01) : 50 - 60
  • [4] DEPHASING AND BURSTING IN COUPLED NEURAL OSCILLATORS
    HAN, SK
    KURRER, C
    KURAMOTO, Y
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (17) : 3190 - 3193
  • [5] Lakshmanan M., 1996, Chaos in nonlinear oscillators:controlling and synchronization
  • [6] Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters
    Liu, Shutang
    Liu, Ping
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3046 - 3055
  • [7] A theory for synchronization of dynamical systems
    Luo, Albert Q.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1901 - 1951
  • [8] Mahmoud E.E., 2010, SOME CHAOTIC COMPLEX
  • [9] Mahmoud E.E., 2011, CHAOTIC HYPERCHAOTIC
  • [10] Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters
    Mahmoud, Emad E.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (03): : 1247 - 1266