Normalization, bias correction, and peak calling for ChIP-seq

被引:69
作者
Diaz, Aaron [1 ]
Park, Kiyoub [1 ]
Lim, Daniel A. [1 ]
Song, Jun S. [1 ]
机构
[1] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
ChIP-seq; wavelets; regression; normalization; order statistics; HUMAN GENOME; MICROARRAY;
D O I
10.1515/1544-6115.1750
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods.
引用
收藏
页数:31
相关论文
共 32 条
[21]   Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values [J].
Pounds, S ;
Morris, SW .
BIOINFORMATICS, 2003, 19 (10) :1236-1242
[22]   c-Myc Regulates Transcriptional Pause Release [J].
Rahl, Peter B. ;
Lin, Charles Y. ;
Seila, Amy C. ;
Flynn, Ryan A. ;
McCuine, Scott ;
Burge, Christopher B. ;
Sharp, Phillip A. ;
Young, Richard A. .
CELL, 2010, 141 (03) :432-445
[23]   Moderated statistical tests for assessing differences in tag abundance [J].
Robinson, Mark D. ;
Smyth, Gordon K. .
BIOINFORMATICS, 2007, 23 (21) :2881-2887
[24]   PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls [J].
Rozowsky, Joel ;
Euskirchen, Ghia ;
Auerbach, Raymond K. ;
Zhang, Zhengdong D. ;
Gibson, Theodore ;
Bjornson, Robert ;
Carriero, Nicholas ;
Snyder, Michael ;
Gerstein, Mark B. .
NATURE BIOTECHNOLOGY, 2009, 27 (01) :66-75
[25]  
Sarkar S, 2010, IEEE INT SYMP CIRC S, P3789, DOI 10.1109/ISCAS.2010.5537736
[26]  
Shannon CE, 1997, M D COMPUT, V14, P306
[27]   BayesPeak: Bayesian analysis of ChIP-seq data [J].
Spyrou, Christiana ;
Stark, Rory ;
Lynch, Andy G. ;
Tavare, Simon .
BMC BIOINFORMATICS, 2009, 10 :299
[28]   The positive false discovery rate:: A Bayesian interpretation and the q-value [J].
Storey, JD .
ANNALS OF STATISTICS, 2003, 31 (06) :2013-2035
[29]   Impact of Chromatin Structures on DNA Processing for Genomic Analyses [J].
Teytelman, Leonid ;
Oezaydin, Bilge ;
Zill, Oliver ;
Lefrancois, Philippe ;
Snyder, Michael ;
Rine, Jasper ;
Eisen, Michael B. .
PLOS ONE, 2009, 4 (08)
[30]   Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J].
Trapnell, Cole ;
Williams, Brian A. ;
Pertea, Geo ;
Mortazavi, Ali ;
Kwan, Gordon ;
van Baren, Marijke J. ;
Salzberg, Steven L. ;
Wold, Barbara J. ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2010, 28 (05) :511-U174