Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal

被引:248
作者
Asl, Babak Mohammadzadeh [1 ]
Setarehdan, Seyed Kamaledin [2 ]
Mohebbi, Maryam [1 ]
机构
[1] Tarbiat Modares Univ, Dept Biomed Engn, Tehran, Iran
[2] Univ Tehran, Fac Elect & Comp Engn, Control & Intelligent Proc Ctr Excellence, Tehran, Iran
关键词
Arrhythmia classification; Generalized discriminant analysis; Heart rate variability; Nonlinear analysis; Support vector machine;
D O I
10.1016/j.artmed.2008.04.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: This paper presents an effective cardiac arrhythmia classification algorithm using the heart rate variability (HRV) signal. The proposed algorithm is based on the generalized discriminant analysis (GDA) feature reduction scheme and the support vector machine (SVM) classifier. Methodology: Initially 15 different features are extracted from the input HRV signal by means of linear and nonlinear methods. These features are then reduced to only five features by the GDA technique. This not only reduces the number of the input features but also increases the classification accuracy by selecting most discriminating features. Finally, the SVM combined with the one-against-all strategy is used to classify the HRV signals. Results: The proposed GDA- and SVM-based cardiac arrhythmia classification algorithm is applied to input HRV signals, obtained from the MIT-BIH arrhythmia database, to discriminate six different types of cardiac arrhythmia. In particular, the HRV signals representing the six different types of arrhythmia classes including normal sinus rhythm, premature ventricular contraction, atrial fibrillation, sick sinus syndrome, ventricular fibrillation and 2 degrees heart block are classified with an accuracy of 98.94%, 98.96%, 98.53%, 98.51%, 100% and 100%, respectively, which are better than any other previously reported results. Conclusion: An effective cardiac arrhythmia classification algorithm is presented. A main advantage of the proposed algorithm, compared to the approaches which use the ECG signal itself is the fact that it is completely based on the HRV (R-R interval) signal which can be extracted from even a very noisy ECG signal with a relatively high accuracy. Moreover, the usage of the HRV signal leads to an effective reduction of the processing time, which provides an online arrhythmia classification system. A main drawback of the proposed algorithm is however that some arrhythmia types such as left bundle branch block and right bundle branch block beats cannot be detected using only the features extracted from the HRV signal. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 51 条
[1]   Comprehensive analysis of cardiac health using heart rate signals [J].
Acharya, R ;
Kannathal, N ;
Krishnan, SM .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (05) :1139-1151
[2]   Classification of cardiac abnormalities using heart rate signals [J].
Acharya, RA ;
Kumar, A ;
Bhat, PS ;
Lim, CM ;
Iyengar, SS ;
Kannathal, N ;
Krishnan, SM .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2004, 42 (03) :288-293
[3]   Classification of heart rate data using artificial neural network and fuzzy equivalence relation [J].
Acharya, UR ;
Bhat, PS ;
Iyengar, SS ;
Rao, A ;
Dua, S .
PATTERN RECOGNITION, 2003, 36 (01) :61-68
[4]   Combined wavelet transformation and radial basis neural networks for classifying life-threatening cardiac arrhythmias [J].
Al-Fahoum, AS ;
Howitt, I .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1999, 37 (05) :566-573
[5]  
BADILINI F, 1991, PROCEEDINGS OF THE ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 13, PTS 1-5, P584, DOI 10.1109/IEMBS.1991.684093
[6]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[7]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[8]  
Camm AJ, 1996, EUR HEART J, V17, P354
[9]   COMPARISON OF 4 TECHNIQUES FOR RECOGNITION OF VENTRICULAR-FIBRILLATION FROM THE SURFACE ECG [J].
CLAYTON, RH ;
MURRAY, A ;
CAMPBELL, RWF .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1993, 31 (02) :111-117
[10]   RECOGNITION OF VENTRICULAR-FIBRILLATION USING NEURAL NETWORKS [J].
CLAYTON, RH ;
MURRAY, A ;
CAMPBELL, RWF .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1994, 32 (02) :217-220