A low-density cDNA microarray with a unique reference RNA: pattern recognition analysis for IFN efficacy prediction to HCV as a model

被引:8
作者
Daiba, A
Inaba, N
Ando, S
Kajiyama, N
Yatsuhashi, H
Terasaki, H
Ito, A
Ogasawara, M
Abe, A
Yoshioka, J
Hayashida, K
Kaneko, S
Kohara, M
Ito, S
机构
[1] JGS Japan Genome Solut Inc, Hachioji, Tokyo 1920031, Japan
[2] Natl Nagasaki Med Ctr, Nagasaki 8568562, Japan
[3] Kyushu Univ, Grad Sch Med Sci, Higashi Ku, Fukuoka 8128582, Japan
[4] Kanazawa Univ, Grad Sch Med Sci, Kanazawa, Ishikawa 9208641, Japan
[5] Tokyo Metropolitan Inst Med Sci, Bunkyo Ku, Tokyo 1138613, Japan
关键词
low-density microarray; artificial reference RNA; efficacy prediction; mahalanobis distance;
D O I
10.1016/j.bbrc.2004.01.160
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have designed and established a low-density (295 genes) cDNA microarray for the prediction of IFN efficacy in hepatitis C patients. To obtain a precise-and consistent microarray data, we collected a data set from three spots for each gene (mRNA) and using three different scanning conditions. We also established an artificial reference RNA representing pseudo-inflammatory conditions from established hepatocyte cell lines supplemented with synthetic RNAs to 48 inflammatory genes. We also developed a novel algorithm that replaces the standard hierarchical-clustering method and allows handling of the large data set with ease. This algorithm utilizes a standard space database (SSDB) as a key scale to calculate the Mahalanobis distance (MD) from the center of gravity in the SSDB. We further utilized sMD (divided by parameter k: MD/k) to reduce MD number as a predictive value. The efficacy prediction of conventional IFN mono-therapy was 100% for non-responder (NR) vs. transient responder (TR)/sustained responder (SR) (P < 0.0005). Finally, we show that this method is acceptable for clinical application. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1088 / 1096
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2002, The Mahalanobis-Taguchi Strategy: A Pattern Technology System
[2]  
Assersohn L, 2002, CLIN CANCER RES, V8, P794
[3]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[4]  
Brunetto MR, 1998, LANCET, V351, P1535
[5]   Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer [J].
Chang, JC ;
Wooten, EC ;
Tsimelzon, A ;
Hilsenbeck, SG ;
Gutierrez, MC ;
Elledge, R ;
Mohsin, S ;
Osborne, CK ;
Chamness, GC ;
Allred, DC ;
O'Connell, P .
LANCET, 2003, 362 (9381) :362-369
[6]   Multivariate approach for selecting sets of differentially expressed genes [J].
Chilingaryan, A ;
Gevorgyan, N ;
Vardanyan, A ;
Jones, D ;
Szabo, A .
MATHEMATICAL BIOSCIENCES, 2002, 176 (01) :59-69
[7]   Molecular portraits and the family tree of cancer [J].
Chung, CH ;
Bernard, PS ;
Perou, CM .
NATURE GENETICS, 2002, 32 (Suppl 4) :533-540
[8]   Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization [J].
Coombes, KR ;
Fritsche, HA ;
Clarke, C ;
Chen, JN ;
Baggerly, KA ;
Morris, JS ;
Xiao, LC ;
Hung, MC ;
Kuerer, HM .
CLINICAL CHEMISTRY, 2003, 49 (10) :1615-1623
[9]   Manufacturing DNA microarrays of high spot homogeneity and reduced background signal [J].
Diehl, Frank ;
Grahlmann, Susanne ;
Beier, Markus ;
Hoheisel, Joerg D. .
NUCLEIC ACIDS RESEARCH, 2001, 29 (07)
[10]  
Dumoulin FL, 2001, J HUMAN VIROL, V4, P195