Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness

被引:16
作者
Litak, G [1 ]
Spuz-Szpos, G [1 ]
Szabelski, K [1 ]
Warminski, J [1 ]
机构
[1] Tech Univ Lublin, Dept Mech, PL-20618 Lublin, Poland
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1999年 / 9卷 / 03期
关键词
D O I
10.1142/S021812749900033X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vibrations of a self-excited oscillator under parametric excitation with nonlinear stiffness were investigated in this paper. Differential equation of motion includes van der Pol, Mathieu and Duffing terms. Vibrations synchronization, stability of solutions were examined by means of the multiple time scale method and Floquet theory. Chaotic solutions were found by means of Lyapunov exponent.
引用
收藏
页码:493 / 504
页数:12
相关论文
共 16 条
[11]  
SZABELSKI K, 1996, P EUROMECH 2 EUR NON, P435
[12]  
SZABELSKI K, 1991, MECH TEORETYCZNA STO, V29, P57
[13]   CHAOTICALLY TRANSITIONAL PHENOMENA IN THE FORCED NEGATIVE-RESISTANCE OSCILLATOR [J].
UEDA, Y ;
AKAMATSU, N .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1981, 28 (03) :217-224
[14]  
van der Pol B, 1928, PHILOS MAG, V6, P763
[15]  
van der Pol B, 1926, PHILOS MAG, V2, P978
[16]   DETERMINING LYAPUNOV EXPONENTS FROM A TIME-SERIES [J].
WOLF, A ;
SWIFT, JB ;
SWINNEY, HL ;
VASTANO, JA .
PHYSICA D, 1985, 16 (03) :285-317