Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field -: art. no. 036123

被引:46
作者
Yasui, T [1 ]
Tutu, H [1 ]
Yamamoto, M [1 ]
Fujisaka, H [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Anal & Complex Dynam Syst, Kyoto 6068501, Japan
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.036123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Ginzburg-Landau model for the anisotropic XY spin system in an oscillating magnetic field below the critical temperature T-c, (psi) over dot (r,t)=(T-c-T)psi-\psi\(2)psi+gammapsi*+del(2)psi+h cos(Omegat) is both theoretically and numerically studied. Here psi is the complex order parameter and gamma stands for the real anisotropy parameter. It is numerically shown that the spatially uniform system shows various characteristic oscillations (dynamical phases), depending on the amplitude h and the frequency Omega of the external field. As the control parameter, either h or Omega, is changed, there exist dynamical phase transitions (DPT), separating them. By making use of the mode expansion analysis, we obtain the phase diagrams, which turn out to be in a qualitative agreement with the numerically obtained ones. By carrying out the Landau expansion, the reduced equations of motion near the DPT are derived. Furthermore, taking into account the spatial variation of order parameters, we will derive the analytic expressions for domain walls, which are represented by the Neel and Bloch type walls, depending on the difference of the coexistence of phases.
引用
收藏
页码:1 / 036123
页数:18
相关论文
共 13 条
[1]   Nonequilibrium phase transition in the kinetic Ising model: Critical slowing down and the specific-heat singularity [J].
Acharyya, M .
PHYSICAL REVIEW E, 1997, 56 (03) :2407-2411
[2]   Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field [J].
Fujisaka, H ;
Tutu, H ;
Rikvold, PA .
PHYSICAL REVIEW E, 2001, 63 (03)
[3]   STATISTICAL-MECHANICS OF PROBABILISTIC CELLULAR AUTOMATA [J].
GRINSTEIN, G ;
JAYAPRAKASH, C ;
YU, H .
PHYSICAL REVIEW LETTERS, 1985, 55 (23) :2527-2530
[4]  
Guckenheimer J, 2013, APPL MATH SCI
[5]  
JANG H, CONDMAT0205070
[6]  
Jang HB, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.066119
[7]   Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field [J].
Korniss, G ;
White, CJ ;
Rikvold, PA ;
Novotny, MA .
PHYSICAL REVIEW E, 2001, 63 (01)
[8]   DYNAMICS OF THE INFINITE-RANGED POTTS-MODEL [J].
MENDES, JFF ;
LAGE, EJS .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (3-4) :653-672
[9]  
Rikvold PA, 2000, SPRINGER PROC PHYS, V85, P105
[10]   Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition [J].
Sides, SW ;
Rikvold, PA ;
Novotny, MA .
PHYSICAL REVIEW E, 1999, 59 (03) :2710-2729