Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?

被引:933
作者
Serpone, Nick [1 ]
机构
[1] Univ Pavia, Dipartimento Chim Organ, Pavia 27100, Italy
关键词
D O I
10.1021/jp065659r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Second-generation TiO2-D-x(x) photocatalysts doped with either anions (N, C, and S mostly) or cations have recently been shown to have their absorption edge red-shifted to lower energies (longer wavelengths), thus enhancing photonic efficiencies of photoassisted surface redox reactions. Some of the studies have proposed that this red-shift is caused by a narrowing of the band gap of pristine TiO2 (e.g., anatase, E-bg = 3.2 eV; absorption edge ca. 387 nm), while others have suggested the appearance of intragap localized states of the dopants. By contrast, a recent study by Kuznetsov and Serpone (J. Phys. Chem. B, in press) has proposed that the commonality in all these doped titanias rests with formation of oxygen vacancies and the advent of color centers (e.g., F, F+, F++, and Ti3+) that absorb the visible light radiation. This article reexamines the various claims and argues that the red-shift of the absorption edge is in fact due to formation of the color centers, and that while band gap narrowing is not an unknown occurrence in semiconductor physics it does necessitate heavy doping of the metal oxide semiconductor, thereby producing materials that may have completely different chemical compositions from that of TiO2 with totally different band gap electronic structures.
引用
收藏
页码:24287 / 24293
页数:7
相关论文
共 139 条
[11]  
BASUN SA, 1990, FIZ TVERD TELA+, V32, P1898
[12]   Nitrogen-containing TiO2 photocatalysts -: Part 2.: Photocatalytic behavior under sunlight excitation [J].
Belver, C. ;
Bellod, R. ;
Stewart, S. J. ;
Requejo, F. G. ;
Fernandez-Garcia, M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 65 (3-4) :309-314
[13]   First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3 -: art. no. 064106 [J].
Carrasco, J ;
Illas, F ;
Lopez, N ;
Kotomin, EA ;
Zhukovskii, YF ;
Evarestov, RA ;
Mastrikov, YA ;
Piskunov, S ;
Maier, J .
PHYSICAL REVIEW B, 2006, 73 (06)
[14]   Formation and identification of intermediates visible-light-assisted photodegradation sulforhodamine-B dye in aqueous TiO2 dispersion [J].
Chen, CC ;
Zhao, W ;
Li, JY ;
Zhao, JC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (16) :3604-3611
[15]   Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation:: A probe for the interfacial electron transfer process and reaction mechanism [J].
Chen, CC ;
Li, XZ ;
Ma, WH ;
Zhao, JC ;
Hidaka, H ;
Serpone, N .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (02) :318-324
[16]   Theoretical study of F-type color center in rutile TiO2 [J].
Chen, J ;
Lin, LB ;
Jing, FQ .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2001, 62 (07) :1257-1262
[17]  
CHEN J, 1999, WUJI CAILIAO XUEBAO, V14, P363
[18]  
Chen P., 2004, J PHOTOCH PHOTOBIO A, V168, P97
[19]   DEFECT CLUSTER CENTERS IN MGO [J].
CHEN, Y ;
WILLIAMS, RT ;
SIBLEY, WA .
PHYSICAL REVIEW, 1969, 182 (03) :960-&
[20]   Supported gold nanoparticles from quantum dot to mesoscopic size scale:: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups [J].
Claus, P ;
Brückner, A ;
Mohr, C ;
Hofmeister, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (46) :11430-11439