Structural and functional alterations of cerebellum following fluid percussion injury in rats

被引:12
作者
Ai, Jinglu [1 ]
Liu, Elaine [1 ]
Park, Eugene [1 ]
Baker, Andrew J. [1 ]
机构
[1] Univ Toronto, St Michaels Hosp, Cara Phelan Ctr Trauma Res, Traumat Brain Injury Lab, Toronto, ON M5B 1W8, Canada
关键词
cerebellum; traumatic brain injury; Purkinje cell death; climbing fiber;
D O I
10.1007/s00221-006-0654-9
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cerebellum was shown to be vulnerable to traumatic brain injury (TBI) in experimental animals. However, the detailed pathological and functional changes within the cerebellum following TBI are not known. Using our established cerebellum fluid percussion injury (FPI) model, we characterized the temporal pattern and the nature of structural damage following FPI, as well as the functional changes of Purkinje cells in response to climbing fiber activation. Our results showed that 60% of Purkinje cells died within the first 24 h following moderate FPI. In contrast, clusters of densely stained shrunken granule cells were stained positive for terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) in 1, 3 or 7 days following FPI animals. We also observed an accompanying structural damage to the cerebellar white matter tract. Disconnected axonal fibers appeared 1 day post-FPI, and loss of white matter fibers were visible 3 and 7 days post-FPI. Massive accumulation of beta-amyloid precursor protein (beta APP) was found in the white matter tracts and molecular layer in the cerebellum of 1, 3 or 7 days FPI animals. Our functional study showed that the majority of Purkinje cells from 1 day and all cells from 3 to 7 days post-FPI had distorted membrane potential and synaptic responses to climbing fiber activation. These results suggested that there is a co-related structural and functional deterioration with a specific temporal pattern in the cerebellum following FPI. These observations provide a basis for future mechanistic investigations aiming to realize neuroprotection from cerebellar neuronal death and loss of cerebellar functionality.
引用
收藏
页码:95 / 112
页数:18
相关论文
共 110 条
[41]   TUNEL apoptotic cell detection in tissue sections: Critical evaluation and improvement [J].
Labat-Moleur, F ;
Guillermet, C ;
Lorimier, P ;
Robert, C ;
Lantuejoul, S ;
Brambilla, E ;
Negoescu, A .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 1998, 46 (03) :327-334
[42]   The effects of cerebellar damage on maze learning in animals [J].
Lalonde, R ;
Strazielle, C .
CEREBELLUM, 2003, 2 (04) :300-309
[43]  
Lambri M, 2001, CLIN NEUROPATHOL, V20, P263
[44]   Pharmacologic therapy in traumatic brain injury: Update on experimental treatment strategies [J].
Laurer, HL ;
McIntosh, TK .
CURRENT PHARMACEUTICAL DESIGN, 2001, 7 (15) :1505-1516
[45]   THE HUMAN CEREBROCEREBELLAR SYSTEM - ITS COMPUTING, COGNITIVE, AND LANGUAGE-SKILLS [J].
LEINER, HC ;
LEINER, AL ;
DOW, RS .
BEHAVIOURAL BRAIN RESEARCH, 1991, 44 (02) :113-128
[46]   COGNITIVE AND LANGUAGE FUNCTIONS OF THE HUMAN CEREBELLUM [J].
LEINER, HC ;
LEINER, AL ;
DOW, RS .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :444-447
[47]   A head impact model of early axonal injury in the sheep [J].
Lewis, SB ;
Finnie, JW ;
Blumbergs, PC ;
Scott, G ;
Manavis, J ;
Brown, C ;
Reilly, PL ;
Jones, NR ;
McLean, AJ .
JOURNAL OF NEUROTRAUMA, 1996, 13 (09) :505-514
[48]   The cerebellum, LTD, and memory: Alternative views [J].
Llinas, R ;
Lang, EJ ;
Welsh, JP .
LEARNING & MEMORY, 1997, 3 (06) :445-455
[49]  
Llinas R, 1993, Curr Opin Neurobiol, V3, P958, DOI 10.1016/0959-4388(93)90168-X
[50]  
Lossi L, 1998, J COMP NEUROL, V399, P359