High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

被引:346
作者
Saba, M [1 ]
Ciuti, C
Bloch, J
Thierry-Mieg, V
André, R
Dang, LS
Kundermann, S
Mura, A
Bongiovanni, G
Staehli, JL
Deveaud, B
机构
[1] Swiss Fed Inst Technol Lausanne, PH Ecublens, Dept Phys, CH-1015 Lausanne EPFL, Switzerland
[2] CNRS, L2M, F-92225 Bagneux, France
[3] Univ Grenoble 1, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France
[4] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy
[5] Univ Cagliari, Ist Nazl Fis Mat, I-09042 Monserrato, Italy
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/414731a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons(1). Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures(2-11). Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-mum-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 10(7) cm(-1). The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 10(5) polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.
引用
收藏
页码:731 / 735
页数:6
相关论文
共 20 条
[1]   Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation [J].
Baumberg, JJ ;
Savvidis, PG ;
Stevenson, RM ;
Tartakovskii, AI ;
Skolnick, MS ;
Whittaker, DM ;
Roberts, JS .
PHYSICAL REVIEW B, 2000, 62 (24) :16247-16250
[2]   Giant Rabi splitting in a microcavity containing distributed quantum wells [J].
Bloch, J ;
Freixanet, T ;
Marzin, JY ;
Thierry-Mieg, V ;
Planel, R .
APPLIED PHYSICS LETTERS, 1998, 73 (12) :1694-1696
[3]   Parametric luminescence of microcavity polaritons [J].
Ciuti, C ;
Schwendimann, P ;
Quattropani, A .
PHYSICAL REVIEW B, 2001, 63 (04)
[4]   Theory of the angle-resonant polariton amplifier [J].
Ciuti, C ;
Schwendimann, P ;
Deveaud, B ;
Quattropani, A .
PHYSICAL REVIEW B, 2000, 62 (08) :R4825-R4828
[5]   Stimulation of polariton photoluminescence in semiconductor microcavity [J].
Dang, LS ;
Heger, D ;
Andre, R ;
Boeuf, F ;
Romestain, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (18) :3920-3923
[6]   Coherent and incoherent polaritonic gain in a planar semiconductor microcavity [J].
Dasbach, G ;
Baars, T ;
Bayer, M ;
Larionov, A ;
Forchel, A .
PHYSICAL REVIEW B, 2000, 62 (19) :13076-13083
[7]  
EHRENSTEIN D, 2000, PHYS REV FOCUS, V5
[8]   Nonlinear emission of semiconductor microcavities in the strong coupling regime [J].
Houdré, R ;
Weisbuch, C ;
Stanley, RP ;
Oesterle, U ;
Ilegems, M .
PHYSICAL REVIEW LETTERS, 2000, 85 (13) :2793-2796
[9]   Experimental evidence of stimulated scattering of excitons into microcavity polaritons [J].
Huang, R ;
Tassone, F ;
Yamamoto, Y .
PHYSICAL REVIEW B, 2000, 61 (12) :R7854-R7857
[10]   Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers [J].
Imamoglu, A ;
Ram, RJ ;
Pau, S ;
Yamamoto, Y .
PHYSICAL REVIEW A, 1996, 53 (06) :4250-4253