Atomic layer deposition of ferroelectric LiNbO3

被引:59
作者
Ostreng, Erik [1 ]
Sonsteby, Henrik H. [1 ]
Sajavaara, Timo [2 ]
Nilsen, Ola [1 ]
Fjellvag, Helmer [1 ]
机构
[1] Univ Oslo, Dept Chem, Ctr Mat Sci & Nanotechnol, N-0315 Oslo, Norway
[2] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland
关键词
LITHIUM-NIOBATE; THIN-FILMS; COERCIVE FIELD; POLARIZATION; GROWTH;
D O I
10.1039/c3tc30271g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ferroelectric and electro-optical properties of LiNbO3 make it an important material for current and future applications. It has also been suggested as a possible lead-free replacement for present PZT-devices. The atomic layer deposition (ALD) technique offers controlled deposition of films at an industrial scale and thus becomes an interesting tool for growth of LiNbO3. We here report on ALD deposition of LiNbO3 using lithium silylamide and niobium ethoxide as precursors, thereby providing good control of cation stoichiometry and films with low impurity levels of silicon. The deposited films are shown to be ferroelectric and their crystalline orientations can be guided by the choice of substrate. The films are polycrystalline on Si (100) as well as epitaxially oriented on substrates of Al2O3 (012), Al2O3 (001), and LaAlO3 (012). The coercive field of samples deposited on Si (100) was found to be similar to 220 kV cm(-1), with a remanent polarization of similar to 0.4 mu C cm(-2). Deposition of lithium containing materials is traditionally challenging by ALD, and critical issues with such deposition are discussed.
引用
收藏
页码:4283 / 4290
页数:8
相关论文
共 43 条
[1]   Atomic Layer Deposition of Li2O-Al2O3 Thin Films [J].
Aaltonen, Titta ;
Nilsen, Ola ;
Magraso, Anna ;
Fjellvag, Helmer .
CHEMISTRY OF MATERIALS, 2011, 23 (21) :4669-4675
[2]   Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition [J].
Aaltonen, Titta ;
Alnes, Mari ;
Nilsen, Ola ;
Costelle, Leila ;
Fjellvag, Helmer .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (14) :2877-2881
[3]   Current status of ferroelectric randomm-access memory [J].
Arimoto, Y ;
Ishiwara, H .
MRS BULLETIN, 2004, 29 (11) :823-828
[4]   GROWTH OF THIN-FILM LITHIUM-NIOBATE BY MOLECULAR-BEAM EPITAXY [J].
BETTS, RA ;
PITT, CW .
ELECTRONICS LETTERS, 1985, 21 (21) :960-962
[5]   GenX:: an extensible X-ray reflectivity refinement program utilizing differential evolution [J].
Bjorck, Matts ;
Andersson, Gabriella .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :1174-1178
[6]   SOME THIN-FILM PROPERTIES OF A NEW FERROELECTRIC COMPOSITION [J].
CHAPMAN, DW .
JOURNAL OF APPLIED PHYSICS, 1969, 40 (06) :2381-&
[7]   Mechanistic Study of Lithium Aluminum Oxide Atomic Layer Deposition [J].
Comstock, David J. ;
Elam, Jeffrey W. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (04) :1677-1683
[9]   Remote Plasma Atomic Layer Deposition of Thin Films of Electrochemically Active LiCoO2 [J].
Donders, M. E. ;
Knoops, H. C. M. ;
Kessels, W. M. M. ;
Notten, P. H. L. .
ATOMIC LAYER DEPOSITION APPLICATIONS 7, 2011, 41 (02) :321-330
[10]   LITHIUM NIOBATE - A HIGH-TEMPERATURE PIEZOELECTRIC TRANSDUCER MATERIAL [J].
FRASER, DB ;
WARNER, AW .
JOURNAL OF APPLIED PHYSICS, 1966, 37 (10) :3853-&