Recent developments in the kinetic theory of nucleation

被引:58
作者
Ruckenstein, E [1 ]
Djikaev, YS [1 ]
机构
[1] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
kinetics of nucleation; molecular interactions; rate of emission of molecules; mean-passage-time based theory; Fokker-Planck equation;
D O I
10.1016/j.cis.2005.06.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A review of recent progress in the kinetics of nucleation is presented. In the conventional approach to the kinetic theory of nucleation, it is necessary to know the free energy of formation of a new-phase particle as a function of its independent variables at least for near-critical particles. Thus the conventional kinetic theory of nucleation is based on the thermodynamics of the process. The thermodynamics of nucleation can be examined by using various approaches, such as the capillarity approximation, density functional theory, and molecular simulation, each of which has its own advantages and drawbacks. Relatively recently a new approach to the kinetics of nucleation was proposed [Ruckenstein E, Nowakowski B. J Colloid Interface Sci 1990;137:583; Nowakowski 13, Ruckenstein E. J Chem Phys 1991;94:8487], which is based on molecular interactions and does not employ the traditional thermodynamics, thus avoiding such a controversial notion as the surface tension of tiny clusters involved in nucleation. In the new kinetic theory the rate of emission of molecules by a new-phase particle is determined with the help of a mean first passage time analysis. This time is calculated by solving the single-molecule master equation for the probability distribution function of a surface layer molecule moving in a potential field created by the rest of the cluster. The new theory was developed for both liquid-to-solid and vapor-to-liquid phase transitions. In the former case the single-molecule master equation is the Fokker-Planck equation in the phase space which can be reduced to the Smoluchowski equation owing to the hierarchy of characteristic time scales. In the latter case, the starting master equation is a Fokker-Planck equation for the probability distribution function of a surface layer molecule with respect to both its energy and phase coordinates. Unlike the case of liquid-to-solid nucleation, this Fokker-Planck equation cannot be reduced to the Smoluchowski equation, but the hierarchy of time scales does allow one to reduce it to the Fokker-Plank equation in the energy space. The new theory provides an equation for the critical radius of a new-phase particle which in the limit of large clusters (low supersaturations) yields the Kelvin equation and hence an expression for the macroscopic surface tension. The theory was illustrated with numerical calculations for a molecular pair interaction potential combining the dispersive attraction with the hard-sphere repulsion. The results for the liquid-to-solid nucleation clearly show that at given supersaturation the nucleation rate depends on the cluster structure (for three cluster structures considered-amorphous, fee, and icosahedral). For both the liquid-to-solid and vapor-to-liquid nucleation, the predictions of the theory are consistent with the results of classical nucleation theory (CNT) in the limit of large critical clusters (low supersaturations). For small critical clusters the new theory provides higher nucleation rates than CNT. This can be accounted for by the fact that CNT uses the macroscopic interfacial tension which presumably overpredicts the surface tension of small clusters, and hence underpredicts nucleation rates. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 72
页数:22
相关论文
共 134 条
[11]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[12]   CONSTRAINED REACTION COORDINATE DYNAMICS FOR THE SIMULATION OF RARE EVENTS [J].
CARTER, EA ;
CICCOTTI, G ;
HYNES, JT ;
KAPRAL, R .
CHEMICAL PHYSICS LETTERS, 1989, 156 (05) :472-477
[13]   STATISTICAL-MECHANICS OF ISOMERIZATION DYNAMICS IN LIQUIDS AND TRANSITION-STATE APPROXIMATION [J].
CHANDLER, D .
JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (06) :2959-2970
[14]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[15]   COMPUTER-SIMULATION OF A GAS-LIQUID SURFACE .1. [J].
CHAPELA, GA ;
SAVILLE, G ;
THOMPSON, SM ;
ROWLINSON, JS .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1977, 73 :1133-1144
[16]   Simulating vapor-liquid nucleation of n-alkanes [J].
Chen, B ;
Siepmann, JI ;
Oh, KJ ;
Klein, ML .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (10) :4317-4329
[17]   Aggregation-volume-bias Monte Carlo simulations of vapor-liquid nucleation barriers for Lennard-Jonesium [J].
Chen, B ;
Siepmann, JI ;
Oh, KJ ;
Klein, ML .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (23) :10903-10913
[18]   Crystal nucleation and growth in large clusters of SeF6 from molecular dynamics simulations [J].
Chushak, Y ;
Bartell, LS .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (41) :9328-9336
[19]   Simulations of spontaneous phase transitions in large, deeply supercooled clusters of SeF6 [J].
Chushak, YG ;
Bartell, LS .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (50) :11196-11204
[20]   DENSITY-FUNCTIONAL THEORY AND FREEZING OF SIMPLE LIQUIDS [J].
CURTIN, WA ;
ASHCROFT, NW .
PHYSICAL REVIEW LETTERS, 1986, 56 (26) :2775-2778