Short interfering RNA (siRNA): tool or therapeutic?

被引:79
作者
Cejka, D [1 ]
Losert, D [1 ]
Wacheck, V [1 ]
机构
[1] Med Univ Vienna, Dept Clin Pharmacol, Sect Expt Oncol Mol Pharmacol, A-1090 Vienna, Austria
关键词
antisense oligonucleotide; double-stranded RNA; RNA-induced silencing complex (RISC); short interfering RNA (siRNA); therapeutic potential;
D O I
10.1042/CS20050162
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Gene silencing by siRNA (short interfering RNA) is a still developing field in biology and has evolved as a novel post-transcriptional gene silencing strategy with therapeutic potential. With siRNAs, virtually every gene in the human genome contributing to a disease becomes amenable to regulation, thus opening unprecedented opportunities for drug discovery. Besides the well-established role for siRNA as a tool for target screening and validation in vitro, recent progress of siRNA delivery in vivo raised expectations for siRNA drugs as the up-and-coming 'magic bullet'. Whether siRNA compounds will make it as novel chemical entities from 'bench to bedside' will probably depend largely on improving their pharmacokinetics in terms of plasma stability and cellular uptake. Whereas locally administered siRNAs have already entered the first clinical trials, strategies for successful systemic delivery of siRNA are still in a preclinical stage of development. Irrespective of its therapeutic potential, RNAi (RNA interference) has unambiguously become a valuable tool for basic research in biology and thereby it will continue to have a major impact on medical science. In this review, we will give a brief overview about the history and current understanding of RNAi and focus on potential applications, especially as a therapeutic option to treat human disease.
引用
收藏
页码:47 / 58
页数:12
相关论文
共 102 条
[1]   Antisense and siRNA as agonists of Toll-like receptors [J].
Agrawal, S ;
Kandimalla, ER .
NATURE BIOTECHNOLOGY, 2004, 22 (12) :1533-1537
[2]   Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice [J].
Aharinejad, S ;
Paulus, P ;
Sioud, M ;
Hofmann, M ;
Zins, K ;
Schäfer, R ;
Stanley, ER ;
Abraham, D .
CANCER RESEARCH, 2004, 64 (15) :5378-5384
[3]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[4]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[5]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[6]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[7]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[8]   Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo [J].
Bertrand, JR ;
Pottier, M ;
Vekris, A ;
Opolon, P ;
Maksimenko, A ;
Malvy, C .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 296 (04) :1000-1004
[9]   Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines [J].
Billy, E ;
Brondani, V ;
Zhang, HD ;
Müller, U ;
Filipowicz, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14428-14433
[10]   Inhibition of respiratory viruses by nasally administered siRNA [J].
Bitko, V ;
Musiyenko, A ;
Shulyayeva, O ;
Barik, S .
NATURE MEDICINE, 2005, 11 (01) :50-55