Characterization of chloroplast Clp proteins in Arabidopsis:: Localization, tissue specificity and stress responses

被引:89
作者
Zheng, B
Halperin, T
Hruskova-Heidingsfeldova, O
Adam, Z
Clarke, AK
机构
[1] Acad Sci Czech Republ, Inst Organ Chem & Biochem, Dept Biochem, CZ-16610 Prague 6, Czech Republic
[2] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, SE-90187 Umea, Sweden
[3] Hebrew Univ Jerusalem, Fac Agr, Dept Agr Bot, IL-76100 Rehovot, Israel
关键词
D O I
10.1034/j.1399-3054.2002.1140113.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The ATP-dependent Clp protease is one of the newly identified proteolytic systems in plant organelles that incorporate the activity of molecular chaperones to target specific polypeptide substrates and avoid inadvertent degradation of others. We describe new nuclear-encoded ClpC (ClpC1) and ClpP (ClpP3-5) isomers in Arabidopsis thaliana that raise the total number of identified Clp proteins to 19. The extra Clp proteins are localized within the stroma of chloroplasts along with the ClpD, P1 and -P6 proteins. Potential differential regulation among these Clp proteins was analysed at both the mRNA and protein level. A comparison between different tissues showed increasing amounts of all plastid Clp proteins from roots to stems to leaves suggested the greatest abundance of proteins was in chloroplasts. The increases in protein were mirrored at the mRNA level for most ClpP isomers (ClpP1, -3, -4 and -6) but not for the three Hsp100 proteins (ClpC1, -C2 and -D) and ClpP5, which exhibited little change in transcript levels, suggesting post-transcriptional/translational regulation. Potential stress induction was also tested for all chloroplast Clp proteins by a series of brief and prolonged stress conditions. Short-term moderate and severe stresses (desiccation, high salt, cold, heat, oxidation, wounding and high light) all failed to elicit significant or rapid increases in any chloroplast Clp protein. However, increases in mRNA and protein content for ClpD and several ClpP isomers did occur during long-term high light and cold acclimation of Arabidopsis plants. These results reveal the great complexity of Clp proteins within the stroma of plant chloroplasts, and that these proteins, rather than being rapidly induced stress proteins, are primarily constitutive proteins that may also be involved in plant acclimation to different physiological conditions.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 41 条
[1]   Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature [J].
Adam, Z ;
Adamska, I ;
Nakabayashi, K ;
Ostersetzer, O ;
Haussuhl, K ;
Manuell, A ;
Zheng, B ;
Vallon, O ;
Rodermel, SR ;
Shinozaki, K ;
Clarke, AK .
PLANT PHYSIOLOGY, 2001, 125 (04) :1912-1918
[2]   ATP-dependent Clp proteases in photosynthetic organisms - A cut above the rest! [J].
Clarke, AK .
ANNALS OF BOTANY, 1999, 83 (06) :593-599
[3]   The cyanobacterium Synechococcus sp PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants [J].
Clarke, AK ;
Eriksson, MJ .
PLANT MOLECULAR BIOLOGY, 1996, 31 (04) :721-730
[4]   THE IDENTIFICATION OF A HEAT-SHOCK PROTEIN COMPLEX IN CHLOROPLASTS OF BARLEY LEAVES [J].
CLARKE, AK ;
CRITCHLEY, C .
PLANT PHYSIOLOGY, 1992, 100 (04) :2081-2089
[5]   Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation [J].
Clarke, AK ;
Schelin, J ;
Porankiewicz, J .
PLANT MOLECULAR BIOLOGY, 1998, 37 (05) :791-801
[6]   Immunochemical studies on the Clp-protease in chloroplasts: Evidence for the formation of a ClpC/P complex [J].
Desimone, M ;
WeissWichert, C ;
Wagner, E ;
Altenfeld, U ;
Johanningmeier, U .
BOTANICA ACTA, 1997, 110 (03) :234-239
[7]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016
[8]   ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J].
Emanuelsson, O ;
Nielsen, H ;
Von Heijne, G .
PROTEIN SCIENCE, 1999, 8 (05) :978-984
[9]   CONSERVATION OF THE REGULATORY SUBUNIT FOR THE CLP ATP-DEPENDENT PROTEASE IN PROKARYOTES AND EUKARYOTES [J].
GOTTESMAN, S ;
SQUIRES, C ;
PICHERSKY, E ;
CARRINGTON, M ;
HOBBS, M ;
MATTICK, JS ;
DALRYMPLE, B ;
KURAMITSU, H ;
SHIROZA, T ;
FOSTER, T ;
CLARK, WP ;
ROSS, B ;
SQUIRES, CL ;
MAURIZI, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (09) :3513-3517
[10]   Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP [J].
Grimaud, R ;
Kessel, M ;
Beuron, F ;
Steven, AC ;
Maurizi, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :12476-12481