The cyanobacterium Synechococcus sp PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants

被引:30
作者
Clarke, AK
Eriksson, MJ
机构
[1] Department of Plant Physiology, University of Umeå
关键词
chaperone; cyanobacteria; gene expression; heat shock; protein synthesis;
D O I
10.1007/BF00019460
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Clp family consists of large, ubiquitous proteins that function as molecular chaperones and/or regulators of ATP-dependent proteolysis. A single copy gene coding for one of these proteins, ClpC, was cloned from the unicellular cyanobacterium Synechococcus sp. PCC 7942. The predicted polypeptide is most similar (ca. 88%) to the chloroplast-localized ClpC protein from higher plants. Using degenerate PCR primers specific for the two distinct ATP-binding domains characteristic of all ClpA-C proteins, partial sequences homologous to clpC from Synechococcus were also identified in five other cyanobacterial strains. The Synechococcus clpC gene is transcribed under standard growth conditions as a monocistronic message of around 2.7 kb. The level of this message, however, decreases slightly after a shift from 37 to 47.5 degrees C for 2 h, similar to expression previously observed for clpC mRNA from heat-shocked higher plants. At the protein level, the amount of ClpC remains relatively unchanged during the high temperature shift, while that of the known heat shock protein GroEL rises considerably. In contrast, the constitutive level of ClpC in Synechococcus increases considerably under conditions of rapid growth, both with increasing light intensities or CO2 concentrations. This, and the fact that attempts to inactivate clpC expression fail to produce a viable phenotype, suggest that ClpC activity is essential for growth in this obligate photoautotrophic cyanobacterium.
引用
收藏
页码:721 / 730
页数:10
相关论文
共 40 条
[1]   ELECTRON-TRANSPORT REGULATES EXCHANGE OF 2 FORMS OF PHOTOSYSTEM-II D1 PROTEIN IN THE CYANOBACTERIUM SYNECHOCOCCUS [J].
CAMPBELL, D ;
ZHOU, GQ ;
GUSTAFSSON, P ;
OQUIST, G ;
CLARKE, AK .
EMBO JOURNAL, 1995, 14 (22) :5457-5466
[2]   RAPID INTERCHANGE BETWEEN 2 DISTINCT FORMS OF CYANOBACTERIAL PHOTOSYSTEM-II REACTION-CENTER PROTEIN-D1 IN RESPONSE TO PHOTOINHIBITION [J].
CLARKE, AK ;
SOITAMO, A ;
GUSTAFSSON, P ;
OQUIST, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :9973-9977
[3]  
CLARKE AK, 1995, PLANTA, V197, P553
[4]   THE IDENTIFICATION OF A HEAT-SHOCK PROTEIN COMPLEX IN CHLOROPLASTS OF BARLEY LEAVES [J].
CLARKE, AK ;
CRITCHLEY, C .
PLANT PHYSIOLOGY, 1992, 100 (04) :2081-2089
[5]   IDENTIFICATION AND EXPRESSION OF THE CHLOROPLAST CLPP GENE IN THE CONIFER PINUS-CONTORTA [J].
CLARKE, AK ;
GUSTAFSSON, P ;
LIDHOLM, JA .
PLANT MOLECULAR BIOLOGY, 1994, 26 (03) :851-862
[6]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[7]   MOLECULAR CHAPERONES [J].
ELLIS, RJ ;
VANDERVIES, SM .
ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 :321-347
[8]   A TECHNIQUE FOR RADIOLABELING DNA RESTRICTION ENDONUCLEASE FRAGMENTS TO HIGH SPECIFIC ACTIVITY [J].
FEINBERG, AP ;
VOGELSTEIN, B .
ANALYTICAL BIOCHEMISTRY, 1983, 132 (01) :6-13
[9]   REGULATION BY PROTEOLYSIS - ENERGY-DEPENDENT PROTEASES AND THEIR TARGETS [J].
GOTTESMAN, S ;
MAURIZI, MR .
MICROBIOLOGICAL REVIEWS, 1992, 56 (04) :592-621
[10]   ATP-DEPENDENT PROTEOLYTIC ACTIVITY FROM SPINACH LEAVES [J].
HAMMOND, JBW ;
PREISS, J .
PLANT PHYSIOLOGY, 1983, 73 (04) :902-905