The Clp family consists of large, ubiquitous proteins that function as molecular chaperones and/or regulators of ATP-dependent proteolysis. A single copy gene coding for one of these proteins, ClpC, was cloned from the unicellular cyanobacterium Synechococcus sp. PCC 7942. The predicted polypeptide is most similar (ca. 88%) to the chloroplast-localized ClpC protein from higher plants. Using degenerate PCR primers specific for the two distinct ATP-binding domains characteristic of all ClpA-C proteins, partial sequences homologous to clpC from Synechococcus were also identified in five other cyanobacterial strains. The Synechococcus clpC gene is transcribed under standard growth conditions as a monocistronic message of around 2.7 kb. The level of this message, however, decreases slightly after a shift from 37 to 47.5 degrees C for 2 h, similar to expression previously observed for clpC mRNA from heat-shocked higher plants. At the protein level, the amount of ClpC remains relatively unchanged during the high temperature shift, while that of the known heat shock protein GroEL rises considerably. In contrast, the constitutive level of ClpC in Synechococcus increases considerably under conditions of rapid growth, both with increasing light intensities or CO2 concentrations. This, and the fact that attempts to inactivate clpC expression fail to produce a viable phenotype, suggest that ClpC activity is essential for growth in this obligate photoautotrophic cyanobacterium.