Hinge-bending motion of D-allose-binding protein from Escherichia coli -: Three open conformations

被引:60
作者
Magnusson, U
Chaudhuri, BN
Ko, J
Park, C
Jones, TA
Mowbray, SL
机构
[1] Swedish Univ Agr Sci, Dept Biol Mol, BMC, SE-75124 Uppsala, Sweden
[2] Uppsala Univ, Dept Cell & Mol Biol, BMC, SE-75124 Uppsala, Sweden
[3] Korea Adv Inst Sci & Technol, Dept Sci Biol, Natl Creat Res Initiat Ctr Behav Genet, Yusong Ku, Taejon 305701, South Korea
关键词
D O I
10.1074/jbc.M200514200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conformational changes of periplasmic binding proteins are essential for their function in chemotaxis and transport. The allose-binding protein from Escherichia coli is, like other receptors in its family, composed of two alpha/beta domains joined by a three-stranded hinge. In the previously determined structure of the closed, ligand-bound form (Chaudhuri, B. N., Ko, J., Park, C., Jones, T. A., and Mowbray, S. L. (1999) J. Mol. Biol. 286, 1519-1531), the ligand-binding site is buried between the two domains. We report here the structures of three distinct open, ligand-free forms of this receptor, one solved at 3.1-Angstrom resolution and two others at 1.7-Angstrom resolution. Together, these allow a description of the conformational changes associated with ligand binding. A few large, coupled torsional changes in the hinge strands are sufficient to generate the overall bending motion, with only minor disruption of the individual domains. Integral water molecules appear to act as structural "ball bearings" in this process. The conformational changes of the related ribose-binding protein follow a distinct pattern. The observed differences between the two proteins can be interpreted in the context of changes in sequence and in crystal packing and provide new insights into the nature of hinge bending motion in this class of periplasmic binding proteins.
引用
收藏
页码:14077 / 14084
页数:8
相关论文
共 53 条
[1]   BACTERIAL PERIPLASMIC PERMEASES BELONG TO A FAMILY OF TRANSPORT PROTEINS OPERATING FROM ESCHERICHIA-COLI TO HUMAN - TRAFFIC ATPASES [J].
AMES, GF ;
MIMURA, CS ;
SHYAMALA, V .
FEMS MICROBIOLOGY LETTERS, 1990, 75 (04) :429-446
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[5]   Multiple open forms of ribose-binding protein trace the path of its conformational change [J].
Björkman, AJ ;
Mowbray, SL .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 279 (03) :651-664
[6]   MATHEMATICAL TREATMENT OF THE KINETICS OF BINDING-PROTEIN DEPENDENT TRANSPORT-SYSTEMS REVEALS THAT BOTH THE SUBSTRATE LOADED AND UNLOADED BINDING-PROTEINS INTERACT WITH THE MEMBRANE-COMPONENTS [J].
BOHL, E ;
SHUMAN, HA ;
BOOS, W .
JOURNAL OF THEORETICAL BIOLOGY, 1995, 172 (01) :83-94
[7]  
Boos W., 1996, Escherichia coli and Salmonella, V1, P1175
[8]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[9]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[10]   LARGE-AMPLITUDE TWISTING MOTIONS OF AN INTERDOMAIN HINGE - A DISULFIDE TRAPPING STUDY OF THE GALACTOSE-GLUCOSE BINDING-PROTEIN [J].
CAREAGA, CL ;
SUTHERLAND, J ;
SABETI, J ;
FALKE, JJ .
BIOCHEMISTRY, 1995, 34 (09) :3048-3055