Discrete wavelet Petrov-Galerkin methods

被引:36
作者
Chen, ZY
Micchelli, CA
Xu, YS
机构
[1] Zhongshan Univ, Dept Computat Sci, Guangzhou 510275, Peoples R China
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[4] Acad Sinica, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1023/A:1014273420351
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a discrete wavelet Petrov-Galerkin method for integral equations of the second kind with weakly singular kernels suitable for solving boundary integral equations. A compression strategy for the design of a fast algorithm is suggested. Estimates for the rate of convergence and computational complexity of the method are provided.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 18 条
[1]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[2]  
ATKINSON K, 1987, MATH COMPUT, V48, P595, DOI 10.1090/S0025-5718-1987-0878693-6
[3]   ON THE DISCRETE GALERKIN METHOD FOR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
ATKINSON, KE ;
POTRA, FA .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1989, 9 (03) :385-403
[4]  
ATKINSON KE, 1990, NUMERICAL SOLUTION I
[5]  
ATKINSON KE, 1987, SIAM J NUMER ANAL, V20, P172
[6]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[7]  
Chen Z, 1999, J INTEGRAL EQUAT, V11, P1
[8]   The Petrov-Galerkin method for second kind integral equations .2. Multiwavelet schemes [J].
Chen, ZY ;
Micchelli, CA ;
Xu, YS .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (03) :199-233
[9]   The Petrov-Galerkin and iterated Petrov-Galerkin methods for second-kind integral equations [J].
Chen, ZY ;
Xu, YS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :406-434
[10]  
Dahmen W., 1993, Adv. Comput. Math., V1, P259