Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models

被引:255
作者
Pappas, S. Sp. [2 ]
Ekonomou, L. [1 ]
Karamousantas, D. Ch. [3 ]
Chatzarakis, G. E. [1 ]
Katsikas, S. K. [4 ]
Liatsis, P. [5 ]
机构
[1] ASPETE Sch Pedagog & Technol Educ, Dept Elect Engn Educators, Athens 14121, Greece
[2] Univ Aegean, Dept Informat & Commun Syst Engn, Karlovassi 83200, Samos, Greece
[3] Technol Educ Inst Kalamata, Antikalamos 24100, Kalamata, Greece
[4] Univ Piraeus, Dept Technol Educ & Digital Syst, Piraeus 18532, Greece
[5] City Univ London, Informat & Biomed Engn Ctr, Sch Engn & Math Sci, Div Elect Elect & Informat Engn, London EC1V 0HB, England
关键词
adaptive multi-model filtering; electricity demand load; ARMA; order selection; parameter estimation; Kalman filter;
D O I
10.1016/j.energy.2008.05.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study addresses the problem of modeling the electricity demand loads in Greece. The provided actual load data is deseasonilized and an AutoRegressive Moving Average (ARMA) model is fitted on the data off-line, using the Akaike Corrected Information Criterion (AICC). The developed model fits the data in a successful manner. Difficulties occur when the provided data includes noise or errors and also when an on-line/adaptive modeling is required. In both cases and under the assumption that the provided data can be represented by an ARMA model, simultaneous order and parameter estimation of ARMA models under the presence of noise are performed. The produced results indicate that the proposed method, which is based on the multi-model partitioning theory, tackles successfully the studied problem. For validation purposes the produced results are compared with three other established order selection criteria, namely AICC, Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC). The developed model could be useful in the studies that concern electricity consumption and electricity prices forecasts. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1353 / 1360
页数:8
相关论文
共 36 条
[1]   FITTING AUTOREGRESSIVE MODELS FOR PREDICTION [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1969, 21 (02) :243-&
[2]  
Anderson BDO, 2000, INT J ROBUST NONLIN, V10, P909, DOI 10.1002/1099-1239(200009/10)10:11/12<909::AID-RNC532>3.0.CO
[3]  
2-Z
[4]  
[Anonymous], ADAPTIVE ESTIMATION
[5]  
Beligiannis G, 2004, IEEE SIGNAL PROC MAG, V21, P28
[6]   Order determination for multivariate autoregressive processes using resampling methods [J].
Chen, CH ;
Davis, RA ;
Brockwell, PJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 57 (02) :175-190
[7]   ARIMA models to predict next-day electricity prices [J].
Contreras, J ;
Espínola, R ;
Nogales, FJ ;
Conejo, AJ .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (03) :1014-1020
[8]   REGRESSION-BASED PEAK LOAD FORECASTING USING A TRANSFORMATION TECHNIQUE [J].
HAIDA, T ;
MUTO, S .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1994, 9 (04) :1788-1794
[9]   PERFORMANCE OF BAYESIAN PARAMETER ESTIMATORS FOR LINEAR SIGNAL MODELS [J].
HAWKES, RM ;
MOORE, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :523-527
[10]  
*HELL PUBL POW COR, 2006, ANN EL EN STAT EC DA