On the invasion of an unstable structureless state by a stable hexagonal pattern

被引:13
作者
Csahók, Z
Misbah, C
机构
[1] Univ Grenoble 1, CNRS, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France
[2] MTA Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
来源
EUROPHYSICS LETTERS | 1999年 / 47卷 / 03期
关键词
D O I
10.1209/epl/i1999-00393-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the invasion of a hexagonal pattern at the expense of an initially structureless state. We show that even in the vicinity of threshold higher-order contributions in the amplitude equations play a decisive role: the invasion velocity of the hexagonal state as evaluated from marginal stability increases. We find that the roll belt that forms around the hexagons does not widen, contrary to previous studies (L. M. Pismer et al., Europhys. Lett., 27 (1994) 433). We confirm this result by numerical simulation and also present results on the fact that even though far from the threshold hexagons exhibit complex temporal oscillations their invasion velocity is still given by the linear marginal stability criterion. Furthermore we provide a heuristic argument on the existence and the width of the roll belt.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 13 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[3]   EXPERIMENTS ON 3 SYSTEMS WITH NONVARIATIONAL ASPECTS [J].
BODENSCHATZ, E ;
CANNELL, DS ;
DEBRUYN, JR ;
ECKE, R ;
HU, YC ;
LERMAN, K ;
AHLERS, G .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 61 (1-4) :77-93
[4]  
BRAND HR, 1989, PROG THEOR PHYS SUPP, V99, P442
[5]  
DAUMONT L, 1997, PHYS REV E, V55, P5564
[6]   PROPAGATING PATTERN SELECTION [J].
DEE, G ;
LANGER, JS .
PHYSICAL REVIEW LETTERS, 1983, 50 (06) :383-386
[7]   Universal algebraic relaxation of fronts propagating into an unstable state and implications for moving boundary approximations [J].
Ebert, U ;
van Saarloos, W .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1650-1653
[8]   PATTERN-FORMATION IN THE PRESENCE OF SYMMETRIES [J].
GUNARATNE, GH ;
OUYANG, Q ;
SWINNEY, HL .
PHYSICAL REVIEW E, 1994, 50 (04) :2802-2820
[9]   GRAVITATIONAL INSTABILITIES OF THIN LIQUID LAYERS - DYNAMICS OF PATTERN SELECTION [J].
LIMAT, L ;
JENFFER, P ;
DAGENS, B ;
TOURON, E ;
FERMIGIER, M ;
WESFREID, JE .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 61 (1-4) :166-182
[10]   SECONDARY INSTABILITIES IN THE STABILIZED KURAMOTO-SIVASHINSKY EQUATION [J].
MISBAH, C ;
VALANCE, A .
PHYSICAL REVIEW E, 1994, 49 (01) :166-183