Universal algebraic relaxation of fronts propagating into an unstable state and implications for moving boundary approximations

被引:58
作者
Ebert, U [1 ]
van Saarloos, W [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
D O I
10.1103/PhysRevLett.80.1650
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the relaxation of fronts propagating into unstable states. While "pushed" fronts relax exponentially like fronts propagating into a metastable state, "pulled" or "linear marginal stability" fronts relax algebraically. As a result, for thin fronts of this type. the standard moving boundary approximation fails. The leading relaxation terms for velocity and shape are of order 1/t and 1(/t3/2). These universal terms are calculated exactly with a new systematic analysis that unifies various heuristic approaches to front propagation.
引用
收藏
页码:1650 / 1653
页数:4
相关论文
共 25 条
[1]   VORTEX-FRONT PROPAGATION IN ROTATING COUETTE-TAYLOR FLOW [J].
AHLERS, G ;
CANNELL, DS .
PHYSICAL REVIEW LETTERS, 1983, 50 (20) :1583-1586
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   SPINODAL DECOMPOSITION AND PATTERN-FORMATION NEAR SURFACES [J].
BALL, RC ;
ESSERY, RLH .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (51) :10303-10320
[4]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[5]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[6]   Shift in the velocity of a front due to a cutoff [J].
Brunet, E ;
Derrida, B .
PHYSICAL REVIEW E, 1997, 56 (03) :2597-2604
[7]   BISTABLE SYSTEMS WITH PROPAGATING FRONTS LEADING TO PATTERN-FORMATION [J].
DEE, GT ;
VANSAARLOOS, W .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2641-2644
[8]   Velocity selection for propagating fronts in superconductors [J].
DiBartolo, SJ ;
Dorsey, AT .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4442-4445
[9]   Streamer propagation as a pattern formation problem: Planar fronts [J].
Ebert, U ;
vanSaarloos, W ;
Caroli, C .
PHYSICAL REVIEW LETTERS, 1996, 77 (20) :4178-4181
[10]   Propagation and structure of planar streamer fronts [J].
Ebert, U ;
vanSaarloos, W ;
Caroli, C .
PHYSICAL REVIEW E, 1997, 55 (02) :1530-1549