Universal algebraic relaxation of fronts propagating into an unstable state and implications for moving boundary approximations

被引:58
作者
Ebert, U [1 ]
van Saarloos, W [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
D O I
10.1103/PhysRevLett.80.1650
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the relaxation of fronts propagating into unstable states. While "pushed" fronts relax exponentially like fronts propagating into a metastable state, "pulled" or "linear marginal stability" fronts relax algebraically. As a result, for thin fronts of this type. the standard moving boundary approximation fails. The leading relaxation terms for velocity and shape are of order 1/t and 1(/t3/2). These universal terms are calculated exactly with a new systematic analysis that unifies various heuristic approaches to front propagation.
引用
收藏
页码:1650 / 1653
页数:4
相关论文
共 25 条
[11]  
EBERT U, UNPUB
[12]  
Fife P.C., 1988, CBMS-NSF Regional Conference Series in Applied Mathematics, V53
[13]   VORTEX-FRONT PROPAGATION IN RAYLEIGH-BENARD CONVECTION [J].
FINEBERG, J ;
STEINBERG, V .
PHYSICAL REVIEW LETTERS, 1987, 58 (13) :1332-1335
[14]   SURFACE-DIRECTED SPINODAL DECOMPOSITION [J].
JONES, RAL ;
NORTON, LJ ;
KRAMER, EJ ;
BATES, FS ;
WILTZIUS, P .
PHYSICAL REVIEW LETTERS, 1991, 66 (10) :1326-1329
[15]   Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics [J].
Karma, A ;
Rappel, WJ .
PHYSICAL REVIEW E, 1996, 53 (04) :R3017-R3020
[16]  
Landau L. D., 1981, Physical kinetics, V10
[17]   VELOCITY OF A PROPAGATING TAYLOR-VORTEX FRONT [J].
NIKLAS, M ;
LUCKE, M ;
MULLERKRUMBHAAR, H .
PHYSICAL REVIEW A, 1989, 40 (01) :493-496
[18]   STRUCTURAL STABILITY AND RENORMALIZATION-GROUP FOR PROPAGATING FRONTS [J].
PAQUETTE, GC ;
CHEN, LY ;
GOLDENFELD, N ;
OONO, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (01) :76-79
[19]   COMPETITION BETWEEN GENERIC AND NONGENERIC FRONTS IN ENVELOPE EQUATIONS [J].
POWELL, JA ;
NEWELL, AC ;
JONES, CKRT .
PHYSICAL REVIEW A, 1991, 44 (06) :3636-3652
[20]   Pearling and pinching: Propagation of Rayleigh instabilities [J].
Powers, TR ;
Goldstein, RE .
PHYSICAL REVIEW LETTERS, 1997, 78 (13) :2555-2558