STRUCTURAL STABILITY AND RENORMALIZATION-GROUP FOR PROPAGATING FRONTS

被引:90
作者
PAQUETTE, GC
CHEN, LY
GOLDENFELD, N
OONO, Y
机构
[1] UNIV ILLINOIS, DEPT PHYS, MAT RES LAB, URBANA, IL 61801 USA
[2] UNIV ILLINOIS, BECKMAN INST, URBANA, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.72.76
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A solution to a given equation is structurally stable if it suffers only an infinitesimal change when the equation (not the solution) is perturbed infinitesimally. We have found that structural stability can be used as a velocity selection principle for propagating fronts. We give examples, using numerical and renormalization group methods.
引用
收藏
页码:76 / 79
页数:4
相关论文
共 39 条
[1]  
Andronov A., 1937, DOKL AKAD NAUK SSSR, V14, P247
[2]  
Aronson D., 1975, PARTIAL DIFFERENTIAL, V446
[3]  
BARENBLATT GI, 1979, SIMILARITY SELF SIMI, P111
[4]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[5]   RENORMALIZATION-GROUP AND THE GINZBURG-LANDAU EQUATION [J].
BRICMONT, J ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :193-208
[6]  
BRICMONT J, IN PRESS COMMUN PURE
[7]  
Chen L., IN PRESS
[8]   RENORMALIZATION-GROUP THEORY FOR THE PROPAGATION OF A TURBULENT BURST [J].
CHEN, LY ;
GOLDENFELD, N .
PHYSICAL REVIEW A, 1992, 45 (08) :5572-5577
[9]   RENORMALIZATION-GROUP THEORY FOR THE MODIFIED POROUS-MEDIUM EQUATION [J].
CHEN, LY ;
GOLDENFELD, N ;
OONO, Y .
PHYSICAL REVIEW A, 1991, 44 (10) :6544-6550
[10]  
CHEN LY, IN PRESS PHYSICA A