Nafion-bifunctional silica composite proton conductive membranes

被引:120
作者
Wang, HT
Holmberg, BA
Huang, LM
Wang, ZB
Mitra, A
Norbeck, JM
Yan, YS [1 ]
机构
[1] Univ Calif Riverside, Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92521 USA
关键词
D O I
10.1039/b107498a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sol-gel derived sulfonated phenethylsilica with hydrophilic -Si-OH and proton conductive -SO3H functional groups was used as a bifunctional additive to improve the proton conductivity and water uptake characteristics of Nafion. Nafion-bifunctional silica (NBS) composite membranes were prepared by casting Nafion-ethanol solutions mixed with sulfonated phenethylsilica sol. The ion exchange capability of NBS composite membranes increases linearly with the amount of bifunctional silica incorporated, and is about 1.9 x 10(-3) mol SO3H g(-1) for NBS with 7.5 wt% silica. Liquid water uptake measurements showed that NBS composite membranes have higher water uptake (g H2O g(-1) composite membrane) than bare recast Nafion while the degree of hydration (i.e., nH(2)O-SO3H) remains fairly constant. The NBS composite membranes showed improved proton conductivity when compared with bare recast Nafion and Nafion 117 membranes at 80 degreesC and over a range of relative humidity.
引用
收藏
页码:834 / 837
页数:4
相关论文
共 23 条
[11]   Infrared spectroscopic study of sol-gel derived mixed-metal oxides [J].
Parler, CM ;
Ritter, JA ;
Amiridis, MD .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 279 (2-3) :119-125
[12]  
Rao C.N. R., 1963, CHEM APPL INFRARED S
[13]   Water and methanol uptakes in nafion membranes and membrane effects on direct methanol cell performance [J].
Ren, X ;
Springer, TE ;
Gottesfeld, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :92-98
[14]   Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method [J].
Sone, Y ;
Ekdunge, P ;
Simonsson, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (04) :1254-1259
[15]   POLYMER ELECTROLYTE FUEL-CELL MODEL [J].
SPRINGER, TE ;
ZAWODZINSKI, TA ;
GOTTESFELD, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (08) :2334-2342
[16]   Proton conductivity in Nafion® 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane [J].
Sumner, JJ ;
Creager, SE ;
Ma, JJ ;
DesMarteau, DD .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :107-110
[17]   METHODS TO ADVANCE TECHNOLOGY OF PROTON-EXCHANGE MEMBRANE FUEL-CELLS [J].
TICIANELLI, EA ;
DEROUIN, CR ;
REDONDO, A ;
SRINIVASAN, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (09) :2209-2214
[18]   Analyses of self-humidification and suppression of gas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells [J].
Watanabe, M ;
Uchida, H ;
Emori, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (04) :1137-1141
[19]   Self-humidifying polymer electrolyte membranes for fuel cells [J].
Watanabe, M ;
Uchida, H ;
Seki, Y ;
Emori, M ;
Stonehart, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3847-3852
[20]   Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells [J].
Watanabe, M ;
Uchida, H ;
Emori, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (17) :3129-3137