Mechanism for Release of Alkaline Phosphatase Caused by Glycosylphosphatidylinositol Deficiency in Patients with Hyperphosphatasia Mental Retardation Syndrome

被引:77
作者
Murakami, Yoshiko [1 ,2 ]
Kanzawa, Noriyuki [1 ,2 ]
Saito, Kazunobu [3 ]
Krawitz, Peter M. [4 ]
Mundlos, Stefan [4 ]
Robinson, Peter N. [4 ]
Karadimitris, Anastasios [5 ]
Maeda, Yusuke [1 ,2 ]
Kinoshita, Taroh [1 ,2 ]
机构
[1] Osaka Univ, Microbial Dis Res Inst, Dept Immunoregulat, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Lab Immunoglycobiol, WPI Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan
[3] Osaka Univ, Microbial Dis Res Inst, DNA Chip Dev Ctr Infect Dis, Suita, Osaka 5650871, Japan
[4] Charite Univ Med Berlin, Inst Med Genet & Humangenet, D-13353 Berlin, Germany
[5] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, Dept Haematol, London W12 0NN, England
关键词
GPI-ANCHORED PROTEINS; MEMBRANE-PROTEINS; BIOSYNTHESIS; TRANSAMIDASE; ATTACHMENT; EXPRESSION; PROMOTER; SEIZURES; MUTATION; MANNOSE;
D O I
10.1074/jbc.M111.331090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hyperphosphatasia mental retardation syndrome (HPMR), an autosomal recessive disease characterized by mental retardation and elevated serum alkaline phosphatase (ALP) levels, is caused by mutations in the coding region of the phosphatidylinositol glycan anchor biosynthesis, class V (PIGV) gene, the product of which is a mannosyltransferase essential for glycosylphosphatidylinositol (GPI) biosynthesis. Mutations found in four families caused amino acid substitutions A341E, A341V, Q256K, and H385P, which drastically decreased expression of the PIGV protein. Hyperphosphatasia resulted from secretion of ALP, a GPI-anchored protein normally expressed on the cell surface, into serum due to PIGV deficiency. In contrast, a previously reported PIGM deficiency, in which there is a defect in the transfer of the first mannose, does not result in hyperphosphatasia. To provide insights into the mechanism of ALP secretion in HPMR patients, we took advantage of CHO cell mutants that are defective in various steps of GPI biosynthesis. Secretion of ALP requires GPI transamidase, which in normal cells, cleaves the C-terminal GPI attachment signal peptide and replaces it with GPI. The GPI-anchored protein was secreted substantially into medium from PIGV-, PIGB-, and PIGF-deficient CHO cells, in which incomplete GPI bearing mannose was accumulated. In contrast, ALP was degraded in PIGL-, DPM2-, or PIGX-deficient CHO cells, in which incomplete shorter GPIs that lacked mannose were accumulated. Our results suggest that GPI transamidase recognizes incomplete GPI bearing mannose and cleaves a hydrophobic signal peptide, resulting in secretion of soluble ALP. These results explain the molecular mechanism of hyperphosphatasia in HPMR.
引用
收藏
页码:6318 / 6325
页数:8
相关论文
共 20 条
[1]   Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency [J].
Almeida, Antonio M. ;
Murakami, Yoshiko ;
Layton, D. Mark ;
Hillmen, Peter ;
Sellick, Gabrielle S. ;
Maeda, Yusuke ;
Richards, Stephen ;
Patterson, Scott ;
Kotsianidis, Ioannis ;
Mollica, Luigina ;
Crawford, Dorothy H. ;
Baker, Alastair ;
Ferguson, Michael ;
Roberts, Irene ;
Houlston, Richard ;
Kinoshita, Taroh ;
Karadimitris, Anastasios .
NATURE MEDICINE, 2006, 12 (07) :846-851
[2]   BIOCHEMICAL-CHARACTERIZATION OF A SOLUBLE FORM OF THE 53-KDA MONOCYTE SURFACE-ANTIGEN [J].
BAZIL, V ;
HOREJSI, V ;
BAUDYS, M ;
KRISTOFOVA, H ;
STROMINGER, JL ;
KOSTKA, W ;
HILGERT, I .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1986, 16 (12) :1583-1589
[3]   Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol [J].
Hong, YJ ;
Maeda, Y ;
Watanabe, R ;
Ohishi, K ;
Mishkind, M ;
Riezman, H ;
Kinoshita, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :35099-35106
[4]   Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins [J].
Hong, YJ ;
Ohishi, K ;
Kang, JY ;
Tanaka, S ;
Inoue, N ;
Nishimura, J ;
Maeda, Y ;
Kinoshita, T .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (05) :1780-1789
[5]   PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol [J].
Kang, JY ;
Hong, YJ ;
Ashida, H ;
Shishioh, N ;
Murakami, Y ;
Morita, YS ;
Maeda, Y ;
Kinoshita, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (10) :9489-9497
[6]   Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria [J].
Kinoshita, T ;
Inoue, N ;
Takeda, J .
ADVANCES IN IMMUNOLOGY, VOL 60, 1995, 60 :57-103
[7]   Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: Recent progress [J].
Kinoshita, Taroh ;
Fujita, Morihisa ;
Maeda, Yusuke .
JOURNAL OF BIOCHEMISTRY, 2008, 144 (03) :287-294
[8]   BIOSYNTHESIS OF GLYCOSYLPHOSPHATIDYLINOSITOL (GPI)-ANCHORED MEMBRANE-PROTEINS IN INTACT-CELLS - SPECIFIC AMINO-ACID-REQUIREMENTS ADJACENT TO THE SITE OF CLEAVAGE AND GPI ATTACHMENT [J].
KODUKULA, K ;
GERBER, LD ;
AMTHAUER, R ;
BRINK, L ;
UDENFRIEND, S .
JOURNAL OF CELL BIOLOGY, 1993, 120 (03) :657-664
[9]   Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome [J].
Krawitz, Peter M. ;
Schweiger, Michal R. ;
Roedelsperger, Christian ;
Marcelis, Carlo ;
Koelsch, Uwe ;
Meisel, Christian ;
Stephani, Friederike ;
Kinoshita, Taroh ;
Murakami, Yoshiko ;
Bauer, Sebastian ;
Isau, Melanie ;
Fischer, Axel ;
Dahl, Andreas ;
Kerick, Martin ;
Hecht, Jochen ;
Koehler, Sebastian ;
Jaeger, Marten ;
Gruenhagen, Johannes ;
de Condor, Birgit Jonske ;
Doelken, Sandra ;
Brunner, Han G. ;
Meinecke, Peter ;
Passarge, Eberhard ;
Thompson, Miles D. ;
Cole, David E. ;
Horn, Denise ;
Roscioli, Tony ;
Mundlos, Stefan ;
Robinson, Peter N. .
NATURE GENETICS, 2010, 42 (10) :827-829
[10]   Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins [J].
Lauc, G ;
Heffer-Lauc, M .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2006, 1760 (04) :584-602