Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling

被引:280
作者
Agren, Rasmus [1 ]
Mardinoglu, Adil [1 ]
Asplund, Anna [2 ]
Kampf, Caroline [2 ]
Uhlen, Mathias [3 ,4 ]
Nielsen, Jens [1 ,3 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Biol Engn, S-41296 Gothenburg, Sweden
[2] Uppsala Univ, Dept Immunol Genet & Pathol, Sci Life Lab, Uppsala, Sweden
[3] KTH Royal Inst Technol, Sci Life Lab, Stockholm, Sweden
[4] KTH Royal Inst Technol, Dept Prote, Stockholm, Sweden
关键词
proteome; personalized medicine; hepatocellular carcinoma; antimetabolites; genome-scale metabolic models; FATTY-ACID OXIDATION; CANCER METABOLISM; GLOBAL RECONSTRUCTION; CARNITINE; INHIBITION; MEDICINE; TARGETS; CELLS;
D O I
10.1002/msb.145122
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synopsis image Personalized GEMs for six hepatocellular carcinoma patients are reconstructed using proteomics data and a task-driven model reconstruction algorithm. These GEMs are used to predict antimetabolites preventing tumor growth in all patients or in individual patients. The presence of proteins encoded by 15,841 genes in tumors from 27 HCC patients is evaluated by immunohistochemistry. Personalized GEMs for six HCC patients and GEMs for 83 healthy cell types are reconstructed based on HMR 2.0 and the tINIT algorithm for task-driven model reconstruction. 101 antimetabolites are predicted to inhibit tumor growth in all patients. Antimetabolite toxicity is tested using the 83 cell type-specific GEMs. An l-carnitine analog inhibits the proliferation of HepG2 cells. Abstract Genome-scale metabolic models (GEMs) have proven useful as scaffolds for the integration of omics data for understanding the genotype-phenotype relationship in a mechanistic manner. Here, we evaluated the presence/absence of proteins encoded by 15,841 genes in 27 hepatocellular carcinoma (HCC) patients using immunohistochemistry. We used this information to reconstruct personalized GEMs for six HCC patients based on the proteomics data, HMR 2.0, and a task-driven model reconstruction algorithm (tINIT). The personalized GEMs were employed to identify anticancer drugs using the concept of antimetabolites; i.e., drugs that are structural analogs to metabolites. The toxicity of each antimetabolite was predicted by assessing the in silico functionality of 83 healthy cell type-specific GEMs, which were also reconstructed with the tINIT algorithm. We predicted 101 antimetabolites that could be effective in preventing tumor growth in all HCC patients, and 46 antimetabolites which were specific to individual patients. Twenty-two of the 101 predicted antimetabolites have already been used in different cancer treatment strategies, while the remaining antimetabolites represent new potential drugs. Finally, one of the identified targets was validated experimentally, and it was confirmed to attenuate growth of the HepG2 cell line.
引用
收藏
页数:13
相关论文
共 50 条
[1]   The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum [J].
Agren, Rasmus ;
Liu, Liming ;
Shoaie, Saeed ;
Vongsangnak, Wanwipa ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (03)
[2]   Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT [J].
Agren, Rasmus ;
Bordel, Sergio ;
Mardinoglu, Adil ;
Pornputtapong, Natapol ;
Nookaew, Intawat ;
Nielsen, Jens .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
[3]   Metabolic risk factors and primary liver cancer in a prospective study of 578,700 adults [J].
Borena, Wegene ;
Strohmaier, Susanne ;
Lukanova, Annekatrin ;
Bjorge, Tone ;
Lindkvist, Bjorn ;
Hallmans, Goran ;
Edlinger, Michael ;
Stocks, Tanja ;
Nagel, Gabriele ;
Manjer, Jonas ;
Engeland, Anders ;
Selmer, Randi ;
Haggstrom, Christel ;
Tretli, Steinar ;
Concin, Hans ;
Jonsson, Hakan ;
Stattin, Par ;
Ulmer, Hanno .
INTERNATIONAL JOURNAL OF CANCER, 2012, 131 (01) :193-200
[4]   Management of Hepatocellular Carcinoma: An Update [J].
Bruix, Jordi ;
Sherman, Morris .
HEPATOLOGY, 2011, 53 (03) :1020-1022
[5]   Cancer metabolism: fatty acid oxidation in the limelight [J].
Carracedo, Arkaitz ;
Cantley, Lewis C. ;
Pandolfi, Pier Paolo .
NATURE REVIEWS CANCER, 2013, 13 (04) :227-232
[6]   Roles of Tetrahydrobiopterin in Promoting Tumor Angiogenesis [J].
Chen, Liye ;
Zeng, Xin ;
Wang, Jihui ;
Briggs, Simon S. ;
O'Neill, Eric ;
Li, Jiliang ;
Leek, Russell ;
Kerr, David J. ;
Harris, Adrian L. ;
Cai, Shijie .
AMERICAN JOURNAL OF PATHOLOGY, 2010, 177 (05) :2671-2680
[7]   Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes [J].
Chen, Rui ;
Mias, George I. ;
Li-Pook-Than, Jennifer ;
Jiang, Lihua ;
Lam, Hugo Y. K. ;
Chen, Rong ;
Miriami, Elana ;
Karczewski, Konrad J. ;
Hariharan, Manoj ;
Dewey, Frederick E. ;
Cheng, Yong ;
Clark, Michael J. ;
Im, Hogune ;
Habegger, Lukas ;
Balasubramanian, Suganthi ;
O'Huallachain, Maeve ;
Dudley, Joel T. ;
Hillenmeyer, Sara ;
Haraksingh, Rajini ;
Sharon, Donald ;
Euskirchen, Ghia ;
Lacroute, Phil ;
Bettinger, Keith ;
Boyle, Alan P. ;
Kasowski, Maya ;
Grubert, Fabian ;
Seki, Scott ;
Garcia, Marco ;
Whirl-Carrillo, Michelle ;
Gallardo, Mercedes ;
Blasco, Maria A. ;
Greenberg, Peter L. ;
Snyder, Phyllis ;
Klein, Teri E. ;
Altman, Russ B. ;
Butte, Atul J. ;
Ashley, Euan A. ;
Gerstein, Mark ;
Nadeau, Kari C. ;
Tang, Hua ;
Snyder, Michael .
CELL, 2012, 148 (06) :1293-1307
[8]  
Cuthbert JA, 1997, CANCER RES, V57, P3498
[9]   Global reconstruction of the human metabolic network based on genomic and bibliomic data [J].
Duarte, Natalie C. ;
Becker, Scott A. ;
Jamshidi, Neema ;
Thiele, Ines ;
Mo, Monica L. ;
Vo, Thuy D. ;
Srivas, Rohith ;
Palsson, Bernhard O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) :1777-1782
[10]   Development of Molecularly Targeted Therapies in Hepatocellular Carcinoma: Where Do We Go Now? [J].
Finn, Richard S. .
CLINICAL CANCER RESEARCH, 2010, 16 (02) :390-397