A class of series acceleration formulae for Catalan's constant

被引:29
作者
Bradley, DM [1 ]
机构
[1] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
关键词
log tangent integral; central binomial coefficient; algebraic unit; Catalan's constant;
D O I
10.1023/A:1006945407723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we develop transformation formulae and expansions for the log tangent integral, which are then used to derive series acceleration formulae for certain values of Dirichlet L-functions, such as Catalan's constant. The formulae are characterized by the presence of an infinite series whose general term consists of a linear recurrence damped by the central binomial coefficient and a certain quadratic polynomial. Typically, the series can be expressed in closed form as a rational linear combination of Catalan's constant and pi times the logarithm of an algebraic unit.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 16 条
[1]  
Abramowitz M., 1972, Handbook of mathematical functions with formulas, graphs, and mathematical tables, P807
[2]  
[Anonymous], EXP MATH
[3]  
BAILEY DH, 1989, MATH COMPUT, V53, P649, DOI 10.1090/S0025-5718-1989-0979934-9
[4]  
BAILEY DH, RNR91032
[5]  
BERNDT BC, 1985, RAMANUJANS NOTEBOO 1, P289
[6]   DECREASING THE NESTING DEPTH OF EXPRESSIONS INVOLVING SQUARE ROOTS [J].
BORODIN, A ;
FAGIN, R ;
HOPCROFT, JE ;
TOMPA, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1985, 1 (02) :169-188
[7]  
Borwein J., 1996, SIGSAM Bulletin, V30, P2, DOI 10.1145/235699.235700
[8]  
BORWEIN JM, 1987, PI AGM, P384
[9]   GENERALIZATION OF THE EUCLIDEAN ALGORITHM FOR REAL NUMBERS TO ALL DIMENSIONS HIGHER THAN 2 [J].
FERGUSON, HRP ;
FORCADE, RW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (06) :912-914
[10]  
HARDY GH, 1979, INTRO THEORY NUMBERS, P148