A class of series acceleration formulae for Catalan's constant

被引:29
作者
Bradley, DM [1 ]
机构
[1] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
关键词
log tangent integral; central binomial coefficient; algebraic unit; Catalan's constant;
D O I
10.1023/A:1006945407723
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we develop transformation formulae and expansions for the log tangent integral, which are then used to derive series acceleration formulae for certain values of Dirichlet L-functions, such as Catalan's constant. The formulae are characterized by the presence of an infinite series whose general term consists of a linear recurrence damped by the central binomial coefficient and a certain quadratic polynomial. Typically, the series can be expressed in closed form as a rational linear combination of Catalan's constant and pi times the logarithm of an algebraic unit.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 16 条
[11]   POLYNOMIAL-TIME ALGORITHMS FOR FINDING INTEGER RELATIONS AMONG REAL NUMBERS [J].
HASTAD, J ;
JUST, B ;
LAGARIAS, JC ;
SCHNORR, CP .
SIAM JOURNAL ON COMPUTING, 1989, 18 (05) :859-881
[12]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534
[13]  
Lewin L., 1981, Polylogarithms and Associated Functions
[14]  
Ramanujan S, 1915, J INDIAN MATH SOC, V7, P93
[15]  
Sloane N., 1995, The encyclopedia of integer sequences
[16]   SIMPLIFICATION OF EXPRESSIONS INVOLVING RADICALS [J].
ZIPPEL, R .
JOURNAL OF SYMBOLIC COMPUTATION, 1985, 1 (02) :189-210