Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries

被引:475
作者
Wang, L. [1 ]
Yu, Y. [1 ]
Chen, P. C. [1 ]
Zhang, D. W. [1 ]
Chen, C. H. [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, Lab Adv Funct Mat & Devices, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
electrospinning; composite; nanofiber; anode; lithium battery;
D O I
10.1016/j.jpowsour.2008.05.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-based nanofibers can be used as anode materials for lithium-ion batteries. Both pure carbon nanofiber and C/Fe3O4 composite nanofibers were prepared by electrospinning and subsequent carbonization processes. The composition and structures were characterized by Fourier transformation infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopy. The electrochemical properties were evaluated in coin-type cells versus metallic lithium. It is found that after an annealing temperature of 500-700 degrees C, the carbon has disordered structure while Fe3O4 is nanocrystalline with a particle size from 8.5 to 52 nm. Compared with the pure carbon nanofiber, the 600 degrees C-carbonized C/Fe3O4 composite nanofiber exhibits much better electrochemical performance with a high reversible capacity of 1007 mAh g(-1) at the 80th cycle and excellent rate capability. A beneficial powderization phenomenon is discovered during the electrochemical cycling. This study suggests that the optimized C/Fe3O4 composite nanofiber is a promising anode material for high performance lithium-ion batteries. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:717 / 723
页数:7
相关论文
共 36 条
[1]   Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO [J].
Alvarez, WE ;
Kitiyanan, B ;
Borgna, A ;
Resasco, DE .
CARBON, 2001, 39 (04) :547-558
[2]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[3]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[4]   Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries [J].
Fan, J ;
Wang, T ;
Yu, CZ ;
Tu, B ;
Jiang, ZY ;
Zhao, DY .
ADVANCED MATERIALS, 2004, 16 (16) :1432-+
[5]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[6]   Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure [J].
Gnanaraj, JS ;
Levi, MD ;
Levi, E ;
Salitra, G ;
Aurbach, D ;
Fischer, JE ;
Claye, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (06) :A525-A536
[7]   Electrochemical characterization of carbon nanotube/nanohoneycomb diamond composite electrodes for a hybrid anode of Li-ion battery and super capacitor [J].
Honda, K ;
Yoshimura, M ;
Kawakita, K ;
Fujishima, A ;
Sakamoto, Y ;
Yasui, K ;
Nishio, N ;
Masuda, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (04) :A532-A541
[8]   Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids [J].
Hong, R. Y. ;
Pan, T. T. ;
Han, Y. P. ;
Li, H. Z. ;
Ding, J. ;
Han, Sijin .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (01) :37-47
[9]   Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes [J].
Hou, HQ ;
Ge, JJ ;
Zeng, J ;
Li, Q ;
Reneker, DH ;
Greiner, A ;
Cheng, SZD .
CHEMISTRY OF MATERIALS, 2005, 17 (05) :967-973
[10]   Cr2O3-based anode materials for Li-ion batteries [J].
Hu, J ;
Li, H ;
Huang, XJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (01) :A66-A69