In vivo recordings of brain activity using organic transistors

被引:781
作者
Khodagholy, Dion [1 ]
Doublet, Thomas [1 ,2 ,3 ,4 ]
Quilichini, Pascale [2 ,3 ]
Gurfinkel, Moshe [1 ]
Leleux, Pierre [1 ,2 ,3 ,4 ]
Ghestem, Antoine [2 ,3 ]
Ismailova, Esma [1 ]
Herve, Thierry [4 ]
Sanaur, Sebastien [1 ]
Bernard, Christophe [2 ,3 ]
Malliaras, George G. [1 ]
机构
[1] Ecole Natl Super Mines, CMP EMSE, MOC, Dept Bioelect, F-13541 Gardanne, France
[2] Aix Marseille Univ, INS, F-13005 Marseille, France
[3] INSERM, UMR S 1106, F-13005 Marseille, France
[4] Microvitae Technol, Pole Activite Y Morandat, F-13120 Gardanne, France
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
MICROELECTRODE ARRAYS; OSCILLATIONS; REPRESENTATION; HIPPOCAMPUS; EPILEPSY; ECOG; EEG;
D O I
10.1038/ncomms2573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications.
引用
收藏
页数:7
相关论文
共 39 条
[1]  
BANCAUD J, 1970, ELECTROEN CLIN NEURO, V28, P85
[2]   Enzymatic sensing with organic electrochemical transistors [J].
Bernards, Daniel A. ;
Macaya, Daniel J. ;
Nikolou, Maria ;
DeFranco, John A. ;
Takamatsu, Seiichi ;
Malliaras, George G. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (01) :116-120
[3]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[4]   Gating of an organic transistor through a bilayer lipid membrane with ion channels [J].
Bernards, Daniel A. ;
Malliaras, George G. ;
Toombes, Gilman E. S. ;
Gruner, Sol M. .
APPLIED PHYSICS LETTERS, 2006, 89 (05)
[5]   Unsupervised Classification of High-Frequency Oscillations in Human Neocortical Epilepsy and Control Patients [J].
Blanco, Justin A. ;
Stead, Matt ;
Krieger, Abba ;
Viventi, Jonathan ;
Marsh, W. Richard ;
Lee, Kendall H. ;
Worrell, Gregory A. ;
Litt, Brian .
JOURNAL OF NEUROPHYSIOLOGY, 2010, 104 (05) :2900-2912
[6]  
Buzaki G., 2006, Rhythms of the Brain, DOI 10.1093/acprof:oso/9780195301069.001.0001
[7]   Neuronal oscillations in cortical networks [J].
Buzsáki, G ;
Draguhn, A .
SCIENCE, 2004, 304 (5679) :1926-1929
[8]   The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes [J].
Buzsaki, Gyoergy ;
Anastassiou, Costas A. ;
Koch, Christof .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (06) :407-420
[9]   High gamma power is phase-locked to theta oscillations in human neocortex [J].
Canolty, R. T. ;
Edwards, E. ;
Dalal, S. S. ;
Soltani, M. ;
Nagarajan, S. S. ;
Kirsch, H. E. ;
Berger, M. S. ;
Barbaro, N. M. ;
Knight, R. T. .
SCIENCE, 2006, 313 (5793) :1626-1628
[10]   HORIZONTAL SPREAD OF SYNCHRONIZED ACTIVITY IN NEOCORTEX AND ITS CONTROL BY GABA-MEDIATED INHIBITION [J].
CHAGNACAMITAI, Y ;
CONNORS, BW .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 61 (04) :747-758