In vivo recordings of brain activity using organic transistors

被引:801
作者
Khodagholy, Dion [1 ]
Doublet, Thomas [1 ,2 ,3 ,4 ]
Quilichini, Pascale [2 ,3 ]
Gurfinkel, Moshe [1 ]
Leleux, Pierre [1 ,2 ,3 ,4 ]
Ghestem, Antoine [2 ,3 ]
Ismailova, Esma [1 ]
Herve, Thierry [4 ]
Sanaur, Sebastien [1 ]
Bernard, Christophe [2 ,3 ]
Malliaras, George G. [1 ]
机构
[1] Ecole Natl Super Mines, CMP EMSE, MOC, Dept Bioelect, F-13541 Gardanne, France
[2] Aix Marseille Univ, INS, F-13005 Marseille, France
[3] INSERM, UMR S 1106, F-13005 Marseille, France
[4] Microvitae Technol, Pole Activite Y Morandat, F-13120 Gardanne, France
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
MICROELECTRODE ARRAYS; OSCILLATIONS; REPRESENTATION; HIPPOCAMPUS; EPILEPSY; ECOG; EEG;
D O I
10.1038/ncomms2573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In vivo electrophysiological recordings of neuronal circuits are necessary for diagnostic purposes and for brain-machine interfaces. Organic electronic devices constitute a promising candidate because of their mechanical flexibility and biocompatibility. Here we demonstrate the engineering of an organic electrochemical transistor embedded in an ultrathin organic film designed to record electrophysiological signals on the surface of the brain. The device, tested in vivo on epileptiform discharges, displayed superior signal-to-noise ratio due to local amplification compared with surface electrodes. The organic transistor was able to record on the surface low-amplitude brain activities, which were poorly resolved with surface electrodes. This study introduces a new class of biocompatible, highly flexible devices for recording brain activity with superior signal-to-noise ratio that hold great promise for medical applications.
引用
收藏
页数:7
相关论文
共 39 条
[11]   Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic [J].
Cho, Jeong Ho ;
Lee, Jiyoul ;
Xia, Yu ;
Kim, Bongsoo ;
He, Yiyong ;
Renn, Michael J. ;
Lodge, Timothy P. ;
Frisbie, C. Daniel .
NATURE MATERIALS, 2008, 7 (11) :900-906
[12]  
Crone NE, 2000, ADV NEUROL, V84, P343
[13]   Pathophysiological mechanisms of genetic absence epilepsy in the rat [J].
Danober, L ;
Deransart, C ;
Depaulis, A ;
Vergnes, M ;
Marescaux, C .
PROGRESS IN NEUROBIOLOGY, 1998, 55 (01) :27-57
[14]   Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures [J].
Dinocourt, C ;
Petanjek, Z ;
Freund, TF ;
Ben-Ari, Y ;
Esclapez, M .
JOURNAL OF COMPARATIVE NEUROLOGY, 2003, 459 (04) :407-425
[15]   Imaging and epilepsy [J].
Duncan, JS .
BRAIN, 1997, 120 :339-377
[16]  
Elschner A., 2010, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, P113
[17]   Joining microelectronics and microionics: Nerve cells and brain tissue on semiconductor chips [J].
Fromherz, Peter .
SOLID-STATE ELECTRONICS, 2008, 52 (09) :1364-1373
[18]   Human gamma-band activity: A review on cognitive and behavioral correlates and network models [J].
Herrmann, Christoph S. ;
Fruend, Ingo ;
Lenz, Daniel .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2010, 34 (07) :981-992
[19]   Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus [J].
Hutzler, M ;
Fromherz, P .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 19 (08) :2231-2238
[20]  
JASPER HH, 1961, EPILEPSIA, V2, P130