Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus

被引:39
作者
Hutzler, M [1 ]
Fromherz, P [1 ]
机构
[1] Max Planck Inst Biochem, Dept Membrane & Neurophys, D-82152 Martinsried, Germany
关键词
capacitive stimulation; extracellular recording; multi-electrode array; silicon;
D O I
10.1111/j.0953-816X.2004.03311.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Probing projections between brain areas and their modulation by synaptic potentiation requires dense arrays of contacts for noninvasive electrical stimulation and recording. Semiconductor technology is able to provide planar arrays with high spatial resolution to be used with planar neuronal structures such as organotypic brain slices. To address basic methodical issues we developed a silicon chip with simple arrays of insulated capacitors and field-effect transistors for stimulation of neuronal activity and recording of evoked field potentials. Brain slices from rat hippocampus were cultured on that substrate. We achieved local stimulation of the CA3 region by applying defined voltage pulses to the chip capacitors. Recording of resulting local field potentials in the CA1 region was accomplished with transistors, The relationship between stimulation and recording was rationalized by a sheet conductor model. By combining a row of capacitors with a row of transistors we determined a simple stimulus-response matrix from CA3 to CA1. Possible contributions of inhomogeneities of synaptic projection, of tissue structure and of neuroelectronic interfacing were considered. The study provides the basis for a development of semiconductor chips with high spatial resolution that are required for long-term studies of topographic mapping.
引用
收藏
页码:2231 / 2238
页数:8
相关论文
共 26 条
[1]  
ANDERSEN P, 1971, EXP BRAIN RES, V13, P222
[2]  
ANDERSON JA, 1973, MATH BIOSCI, V14, P197
[3]  
[Anonymous], COLLECTIVE PROPERTIE
[4]  
[Anonymous], SYNAPTIC ORG BRAIN
[5]   Transistor array with an organotypic brain slice: field potential records and synaptic currents [J].
Besl, B ;
Fromherz, P .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 15 (06) :999-1005
[6]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[7]   SYNAPTIC PLASTICITY IN RAT HIPPOCAMPAL SLICE CULTURES - LOCAL HEBBIAN CONJUNCTION OF PRESYNAPTIC AND POSTSYNAPTIC STIMULATION LEADS TO DISTRIBUTED SYNAPTIC ENHANCEMENT [J].
BONHOEFFER, T ;
STAIGER, V ;
AERTSEN, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (20) :8113-8117
[8]   A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays [J].
Egert, U ;
Schlosshauer, B ;
Fennrich, S ;
Nisch, W ;
Fejtl, M ;
Knott, T ;
Muller, T ;
Hammerle, H .
BRAIN RESEARCH PROTOCOLS, 1998, 2 (04) :229-242
[9]   A 128x128 CMOS biosensor array for extracellular recording of neural activity [J].
Eversmann, B ;
Jenkner, M ;
Hofmann, F ;
Paulus, C ;
Brederlow, R ;
Holzapfl, B ;
Fromherz, P ;
Merz, M ;
Brenner, M ;
Schreiter, M ;
Gabl, R ;
Plehnert, K ;
Steinhauser, M ;
Eckstein, G ;
Schmitt-Landsiedel, D ;
Thewes, R .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (12) :2306-2317
[10]   A NEURON-SILICON JUNCTION - A RETZIUS CELL OF THE LEECH ON AN INSULATED-GATE FIELD-EFFECT TRANSISTOR [J].
FROMHERZ, P ;
OFFENHAUSSER, A ;
VETTER, T ;
WEIS, J .
SCIENCE, 1991, 252 (5010) :1290-1293