Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation

被引:453
作者
Peng, Shige [1 ]
机构
[1] Shandong Univ, Inst Math, Jinan 250100, Peoples R China
关键词
g-expectation; G-expectation; G-normal distribution; BSDE; SDE; Nonlinear probability theory; Nonlinear expectation; Brownian motion; Ito's stochastic calculus; Ito's integral; Ito's formula; Gaussian process; Quadratic variation process; Jensen's inequality; G-convexity;
D O I
10.1016/j.spa.2007.10.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a notion of nonlinear expectation - G-expectation - generated by a nonlinear heat equation with infinitesimal generator G. We first study multi-dimensional G-normal distributions. With this nonlinear distribution we can introduce Our G-expectation under which the canonical process is a multi-dimensional G-Brownian motion. We then establish the related stochastic calculus, especially stochastic integrals of Ito's type with respect to Our G-Brownian motion, and derive the related Ito's formula. We have also obtained the existence and uniqueness of stochastic differential equations under Our G-expectation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2223 / 2253
页数:31
相关论文
共 59 条
  • [1] Coherent measures of risk
    Artzner, P
    Delbaen, F
    Eber, JM
    Heath, D
    [J]. MATHEMATICAL FINANCE, 1999, 9 (03) : 203 - 228
  • [2] Artzner P., 1997, Journal of Risk, V10, P68
  • [3] BARRIEU P, 2004, CONT MATH IN PRESS
  • [4] BRIAND P, 2000, ELECT COMM PROBAB, V5
  • [5] Jensen's inequality for g-expectation:: part 1
    Chen, ZJ
    Kulperger, R
    Jiang, L
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (11) : 725 - 730
  • [6] Ambiguity, risk, and asset returns in continuous time
    Chen, ZJ
    Epstein, L
    [J]. ECONOMETRICA, 2002, 70 (04) : 1403 - 1443
  • [7] A property of backward stochastic differential equations
    Chen, ZJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04): : 483 - 488
  • [8] A general downcrossing inequality for g-martingales
    Chen, ZJ
    Peng, SG
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) : 169 - 175
  • [9] CHERIDITO P, 2005, ARXIVMATHPR0509295V1
  • [10] Chung K. L., 1990, Introduction to Stochastic Integration, V2nd